Document Type : Original Research Paper

Authors

1 Assistant Professor of Architecture, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

2 Ph.D in Urban and Regional Planning, Shahid Beheshti University, Tehran, Iran

Abstract

Introduction
Due to the hot and humid climate of the southern coastal cities of Iran, radiation and airflow play a very important role in thermal comfort feeling. If the wind flow is compatible with shade, they cause more evaporation in the perspiration process and cool the body, allowing people to continue working at temperatures above the comfort zone. Therefore, the orientation of buildings in these regions should be determined simultaneously based on the optimum use of solar radiation and wind flow. This research aims to determine the best orientations of buildings, compatible with climate, in Bandar Abbas, Bushehr and Ahvaz cities, by surveying the amount of direct radiation energy received by the vertical surfaces of buildings.
Research Methodology
To calculate the amount of direct radiation energy received by the vertical surfaces in different geographic directions, firstly, the parameters related to the solar geometry including solar hour angle, declination angle, side angle, Zenith angle, and sun altitude were extracted using computational relationships and Q-BASIC software, in different hours of the day, in studied cities. Secondly, using the “Law of cosines” computational method and Olgyay chart, the amount of per hour direct radiation energy, received by vertical surfaces in 24 geographic directions was measured through theoretical and real calculation. Thirdly, based on the minimum temperature of thermal comfort, the amount of energy received by the surfaces was calculated for hot and cold periods of the year, separately. Fourthly, the most appropriate orientations for one-sided, two-sided, and four-sided buildings were determined based on the maximum difference between the received energy in the cold and hot periods and the highest percentage of radiation received in the cold period of the year.
Research Findings
The amount of received energy during the hot period compared to the whole year according to the Law of Cosines and Olgyay chart methods, is respectively 80.8% and 82% in Bandar Abbas, 66.1% and 67.9% in Bushehr, and, 67.4% and 65.7%, respectively. The results indicate that the duration of hot period of the year is longer than cold period in studied cities and the highest amount of energy is obtained through the hot period, therefore it is necessary to control the absorption of solar radiation by external surfaces and to prevent the penetration of radiation into the internal spaces during the hot period in these cities. Accordingly, the best orientations for building in studied cities are determined based on the minimum amount of solar energy received during the hot period. The best orientation for one-sided buildings according to the Law of Cosines in Bandar Abbas, Bushehr and Ahwaz is 180º South and the maximum amount of received energy in the hot period is respectively 75.7%, 54.1% and 54.5%. Also, the best orientation for one-sided buildings according to Olgyay chart in Bandar Abbas is the orientations of 165º Southeast and Southwest with the maximum amount of 74.6% and in Bushehr and Ahvaz is 180º South with the maximum amount of 52% and 52.8% received energy, respectively in hot period of the year.
Based on the minimum received energy during the hot period, the best orientations for two-sided buildings using the Law of Cosines and Olgyay chart in Bandar Abbas, Bushehr and Ahvaz are the North-South direction. The maximum amount of received energy during the hot period using the mentioned methods is respectively 77.3% and 77.4% in Bandar Abbas, 57% and 56.1% in Bushehr, and 57% and 56% in Ahvaz. Also, the best orientation for four-sided buildings using the Law of Cosines and Olgyay chart in the cities of Bandar Abbas, Bushehr and Ahwaz is respectively (165, -15, 75, 105) and (-165, 15, -75, 105) degrees. The maximum amount of received energy during the hot period using mentioned methods is respectively 79.8% and 81.1% in Bandar Abbas, 66% and 67.6% in Bushehr and 65.4% and 67.3% in Ahvaz.
Conclusion
The results show that the optimum orientations using the Law of Cosines and Olgyay chart methods, for one-sided, two-sided and four-sided buildings are the same in studied cities. In order to obtain the optimum amount of solar energy on vertical surfaces, the best orientation for one-sided buildings in Bandar Abbas, Bushehr and Ahvaz is respectively 180º South and 165º Southeast and Southwest. The best orientation for two-sided buildings in studied cities is North-South and then (165, -15) and (-165, -15) degrees. The best orientations for four-sided buildings in those cities are (165, -15, 75, -105) and (-165, 15, -75, 105) degrees then (180, 0, 90, -90) degrees.

Keywords

-        برزگر، زهرا؛ حیدری، شاهین (1392). بررسی تاثیر تابش دریافتی خورشید در بدنه‌های ساختمان بر مصرف انرژی بخش خانگی، نشریه هنرهای زیبا- معماری و شهرسازی، دوره 18، شماره 1، صص. 56-45.
-        حجازی‌زاده، زهرا؛ افتخاری، سیدمروت؛ سلکی، هیوا (1391). بهینه‌سازی جهت‌گیری فضاهای آزاد در شهر دزفول بر اساس شرایط اقلیمی، جغرافیا (فصلنامه علمی ـ پژوهشی انجمن جغرافیای ایران)، سال دهم، شماره 32، صص. 27-7.
-        حسین‌آبادی، سعید؛ لشکری، حسن؛ سلمانی‌مقدم، محمد (1391). طراحی اقلیمی ساختمان‌های مسکونی شهر سبزوار با تاکید بر جهت‌گیری ساختمان و عمق سایبان، جغرافیا و توسعه، سال دهم، شماره 27، 116-103.
-        حسینی، سید محمد؛ حجازی‌زاده، زهرا؛ کربلایی‌درئی، علیرضا؛ کاشکی، عبدالرضا (1398). بهینه‌سازی جهت سازه‌های ساختمانی بر اساس تابش خورشید در همدان، جغرافیا (فصلنامه علمی ـ پژوهشی انجمن جغرافیای ایران) ، دوره 17، شماره 60، صص. 20-5.
-        خلیلی، علی؛ رضایی صدر، حسن (1376). برآورد تابش کلی خورشید در گستره ایران بر مبنای داده‌های اقلیمی، تحقیقات جغرافیایی، دوره 4، شماره 46، صص. 35-15.
-        خیرآبادی، فواد؛ نورمحمدزاد، حسین؛ علیزاده، هوشمند (1396). نقش جهت‌گیری کالبد فضاهای شهری در میزان آسایش اقلیمی شهروندان )مطالعه موردی: شهر بندرعباس(، جغرافیا و پایداری محیط، سال هفتم، شماره 24، صص. 31-15.
-        عظمتی، علی‌اکبر؛ حسینی، حسین (1392). بررسی تاثیر جهت‌گیری ساختمان‌های آموزشی بر بارهای حرارتی و برودتی در اقلیم‌های مختلف، علوم و تکنولوژی محیط زیست، دوره 15، شماره 2، صص. 157-147.
-        قانقرمه، عبدالعظیم؛ روشن، غلامرضا؛ شاهکویی، اسماعیل (1397). بازنگری در تعیین دمای پایه آسایش حرارتی مناطق اقلیمی متفاوت ایران به منظور محاسبه شاخص درجه- روز مورد نیاز سرمایشی و گرمایشی، فصلنامه علمی- پژوهشی اطلاعات جغرافیایی، دوره 27، شماره 105، صص. 143-127.
-        کربلائی‌درئی، علیرضا؛ حجازی‌زاده، زهرا (1396). بهینه‌سازی جهت‌گیری استقرار ساختمان در شهر کاشان بر اساس شرایط اقلیمی، مطالعات جغرافیایی مناطق خشک، دوره هفتم، شماره 27، صص. 103-85.
-        کسمایی، مرتضی (1381). اقلیم و معماری، اصفهان، نشر خاک، چاپ دوم، صص. 31-28.
-        گنجی، حسن (1333). تقسیمات اقلیمی ایران، مجله دانشکده ادبیات، سال سوم، شماره 1، صص. 72-27.
-        لشکری، حسن؛ موزرمی، سارا؛ سلکی، هیوا؛ لطفی، کورش (1390)، بهینه‌سازی جهت‌گیری بناهای ساختمانی در شهر اهواز بر اساس شرایط اقلیمی، جغرافیای طبیعی، سال چهارم، شماره 12، صص. 62-45.
-        محمدزاده، رحمت؛ جهانی، مقصود؛ قراخانی شجاعی، رضا (1394). مطالعه میزان انطباق مساکن شهر جلفا با زاویه تابش آفتاب، فصلنامه فضای جغرافیایی، سال پانزدهم، شماره 52، صص. 135-117.
-        مقررات ملی ساختمان ایران- مبحث 19: صرفه‌جویی در مصرف انرژی (1388). وزارت مسکن و شهرسازی- دفتر امور مقررات ملی ساختمان.
-        Al-Anzi A, Seo D, Krarti M (2009). Impact of building shape on thermal performance of office buildings in Kuwait, Energy Conversion and Management, Vol. 50, No. 3, pp. 822–828.
-        Angstrom A (1924). Solar and terrestrial radiation, Quarterly Journal of the Royal Meteorological Society, Vol. 50, pp. 121-126.
-        Ashrae (1995). Handbook, heating, ventilating, and airconditioning applications. ashrae publications.
-        Bakirci K (2009). Models of solar radiation with hours of bright sunshine: A review, Renewable and Sustainable Energy Reviews, Vol. 13, No. 9, pp. 2580-2588.
-        Barzegar Z, Heydari Sh, Zarei M (2012). Evaluuation of the effect of biulding orientation on achieved solar radiation- A NE-SW orientated case of urban residence in semi-arid climate, International Journal of Architectural Engineering & Urban Planning, Vol. 22, No. 2, pp. 108-113.
-        Coppolino S (1990). Validation of a very simple model for computing global solar radiation in european african (Asian & North American areas), Solar and Wind Technology, Vol. 7, No. 4, pp. 489-494.
-        Depecker P, Menezo C, Virgone J, Lepers S (2001). Design of buildings shape and energetic consumption, Building and Environment, Vol. 36, No. 5, pp. 627-635.
-        Duffie JA, Beckman WA (2006). Solar engineering of thermal processes, 3rd ed, John Wiley & Sons, Inc.
-        Energyplus, 2018. Retrieved from:
-        Hemsath TL, Alagheband Bandhosseini K (2015). Sensitivity analysis evaluating basic building geometry's effect on energy use, Renewable Energy, Vol. 76, pp. 526-38.
-        IRIMO, 2018. Retrieved from: http://www.irimo.ir/far/wd/2703, at May, 2018; 23:30:28PM.
-        Maghrabi AH (2009). Parameterization of simple model to estimate monthly global solar radiation based on meteorological variables and evaluation of existing solar radiation models for tabuk, Saudi Arabia, Energy Conversion and Management, Vol. 50, No. 11, pp. 2754-2760.
-        Neuwirth F (1980). The Estimation of global and sky radiation in austria, Solar Energy, Vol. 24, No. 5, pp. 421-426.
-        Oral GK, Yilmaz Z (2003). Building form for cold climatic zones related to building envelope from heating energy conservation point of view, Energy and Buildings, Vol. 35, No. 4, pp. 383-388.
-        Ourghi R, Al-Anzi A, Krarti M (2007). A simplified analysis method to predict the impact of shape on annual energy use for office buildings, Energy Conversion and Management, Vol. 48, No. 1, pp. 300-305.
-        Paltridge GW, Proctor D (1976). Monthly mean solar radiation statistics for Australia, Solar Energy, Vol. 18, No. 3, pp. 235- 243.
-        Prescott JA (1940). Evaporation from a water surface in relation to solar radiation, Transactions of the Royal Society of South Australia, Vol. 64, pp. 114-118.
-        Sabbagh JA, Sayigh AAM, Al-Salam EMA (1977). Estimation of the total solar radiation from meteorological data, Solar Energy, Vol. 19, No. 3, pp. 307-311.
-        Samimi J (1994). Estimation of height-dependent solar irradiation and application to the solar climate of Iran, Solar Energy, Vol. 52, No. 5, pp. 401-409.
-        Sozen A, Arcaklio E, Ozalp M (2004). Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data, Energy Conversion and Management, Vol. 45, Nos. 18-19, pp. 3033-3052.
-        Watson D, Labs K (1983). Climate design: energy efficient building principles and practices., McGraw-Hill, New York, 37.
-        Wei L, Tian W, Zuo J, Yang ZY, Liu YL, Yang S (2016). Effects of building form on energy use for buildings in cold climate regions, Procedia Engineering, Vol. 146, pp. 182-189.
-        Wu C, Liu Y, Wang T (2007). Methods and strategy for modeling daily global solar radiation with measured meteorological data; case study in nanchang station, China, Energy Conversion and Management, Vol. 48, No. 9, pp. 2447-2452.
-        Zamani M, Akbari H, Hadavi F (2016). Best orientation determination of buildings in zanjan city based on solar radiation, Armanshahr Architecture & Urban Development, Vol. 8, No. 16, pp. 85-94.20.