نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده هنر و معماری، دانشگاه مازندران، مازندران، ایران.

چکیده

با افزایش قابل توجه مصرف انرژی در بخش ابنیه، توجه به ویژگی‌های ساخت و ساز و سیاست‌گذاری برای بهینه‌سازی مصرف انرژی امری ضروری است. اصولا برنامه‌ریزی و سیاست‌گذاری برای تک تک ساختمان‌ها امری غیر ممکن بوده و راهبردهای کلی برای تدوین چارچوب‌های بهسازی  ساختمانها براساس مطالعه بر روی تیپولوژی‌های  منطبق با ساختار هر منطقه تدوین می‌گردند. در همین راستا، هدف این مطالعه استخراج تیپولوژی وضع موجود مسکن شهر بابلسر، با تاکید بر پارامترهای تاثیرگذار بر مصرف انرژی، و به منظوربهسازی عملکرد حرارتی آن‌ها بر مبنای مقررات ملی ساختمان است. گردآوری اطلاعات به روش میدانی بر روی 384 نمونه مسکونی ساخته شده در بازه زمانی سال‌های 1342- 1395 در شهر بابلسر انجام گردید. تحلیل داده‌ها با راهبرد توصیفی- تحلیلی و استفاده از روش‌های آماری در تحلیل کمی و همچنین ساده‌سازی تصاویر پلان‌های مسکونی انجام گرفت. نتیجه تحلیل‌های ارائه شده، هشت تیپولوژی برای ساختمان‌های مسکونی بابلسر در دو گروه ویلایی و آپارتمانی ارائه می‌کند. نتایج حاصل از تحلیل عملکرد حرارتی تیپولوژی‌های استخراج‌شده نشان داد که نمونه‌ها حداقل شرایط لازم بر مبنای مقررات ملی مبحث 19 را دارا نمی‌باشند و برای ارتقا عملکرد حرارتی آنها، اضافه نمودن حداقل یک لایه عایق حرارتی مانند یونولیت به ضخامت پنج سانتیمتر به جداره خارجی بنا شامل دیوارها و بام ضروری است. نتایج این مطالعه برای بهسازی مصرف انرژی ساختمان‌ها و تدوین مقررات ملی منطقه‌ای اقلیم معتدل خزری قابل استفاده می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Developing Residential Building Typologies with Thermal Efficiency Approach for Residential Buildings in Babolsar City

نویسنده [English]

  • Maria Kordjamshidi

Assistant Professor, Faculty of Art and Architecture, University of Mazandaran, Mazandaran, Iran

چکیده [English]

Extended Abstract
Regarding the substantial increase of energy consumption in the building sector, it is necessary to consider construction characteristics in the policymaking processes in order to improve the building energy efficiency. Basically, it is infeasible to improve the energy efficiency of the building industry based on the energy characteristics of individual buildings. Political strategies are developed based on the study of building typologies following the climatic conditions of each region. There are limited studies on the types of residential buildings, most of which emphasize on architectural concepts and building formation. Lack of research in the field of housing typology in Iran highlights the necessity to develop an approach toward energy-efficient residential buildings. This study aims to recognize the typologies of residential buildings, focusing on the parameters affecting energy consumption, in Babolsar City, which is selected as a city representative of the humid and mild climate in North of Iran. This paper also tries to evaluate and improve the thermal performances of the recognized typologies based on the Iranian National Building Code (Part 19: Energy Efficiency).
The methodology is completed into four main sections:
1) Reviewing the literature in order to identify and select the criteria for developing residential building typologies
2) Conducting a survey on a number of residential samples based on the statistics and distribution of residential buildings in Babolsar city
3) Classifying buildings and presenting plan typologies based on statistical and pictorial analyses
4) Investigating the heat transfer coefficient of the recognized typologies and introducing the optimal patterns according to the Iranian National Building Code (Part 19: Energy Efficiency).
Using a descriptive-analytical strategy, this research is based on statistical methods of quantitative analysis and simplifies residential building plan concepts. The data are collected on the field by investigating 384 residential buildings constructed in a period between 1963 and 2016 in Babolsr City. Each sample is scrutinized by completing a questionnaire. The questionnaires are created in two parts: 1- the building general information including, the architectural type (apartment or villa), the age of the building, the number of families, the neighborhood type, the building gross area, the number of bedrooms and building type (flat/apartment, attached/ semi-attached); and 2. the construction details including, the physical parameters of the building such as materials, windows/glazing type,  overhang size, thermal insulation, indoor space height, area of external surfaces / controlled / uncontrolled spaces, heating and cooling system, and building envelope details. In other words, all required information and parameters affecting the building energy consumption are included.
The residential building samples are classified into ten categories based on the number of families, building type, and neighborhood unit. Typologies are divided into two groups of “villa” and “apartment” housing. Each group has four subsets numbered as A, B, C, and D which differs in terms of total plan area and the position of conditioned/ unconditioned zones. In order to determine a typical plan for each category, all possible plan concepts for each group were designed and codified. Then, the plans of all 384 samples were simplified and codified and categorized in their relevant groups. Finally, a group of higher frequency was chosen as the group representing the typical plan.  The eight recognized typologies of this research can be used as reference in any research on housing for evaluating and predicting thermal performance, cost, and energy analysis.
The analysis of the thermal performance of the building typologies demonstrated that none of the typologies comply with the Iranian National Building Code (Part 19), in terms of conformity with heat transfer coefficient. Adding a 5-cm thermal insulation, with a heat transfer coefficient of λ = 0.041, to the external wall, and also replacing windows with double-glazed ones are necessary to improve their energy efficiency and achieve the minimum requirement of the building code.
The results of this study can be used as a basis for further investigations on energy-efficient building design, in order to improve the thermal performance of buildings rather than developing a regional energy efficiency building code for building construction in the mild climate in north of Iran. The presented typologies can be used as a reference for energy auditing, retrofit actions, and refurbishment measurements, and for quantifying the energy-saving potentials of existing buildings. They can be applied to the existing buildings stock to increase energy performance by considering the optimal tradeoff between policymaking and cost. The results are also important for developing and modifying regulations. Further studies are required to make the result of this study applicable to other climatic regions in Iran.

کلیدواژه‌ها [English]

  • Typology
  • Residential Buildings
  • Energy Efficiency
  • Energy
ایرانمنش الهه، نصرت‌پور دریا، میرشک داغیان مریم، هادی مرضیه (1393) ارائه شاخص‌های طراحی مسکن بوم با تاکید بر مولفه‌های طراحی شهری اقلیمی؛ موردپژوهی: شهر کرمان، مجله مدیریت شهری، شماره 38،بهار 1393، صص 347-370
پورموسی محبوبه ، مفیدی شمیرانی سید مجید، محمودی زرندی مهناز (1396) ارزیابی تطبیقی رفتارحرارتی و تهویه در بناهای مسکونی بومی اقلیم معتدل و مرطوب ایران (مطالعه موردی: خانه کلبادی ساری و خانه آقاجان نسب بابل)-   نشریه مدیریت شهری، شماره 47، تابستان 1396  صص 337-350
حیدری شاهین،  1388،  برنامه‌ریزی انرژی در ایران – با تکیه بر بخش انرژی، انتشارات دانشگاه تهران
خاکپور مژگان، انصاری مجتبی، طاهرنیان علی(1389) گونه‌شناسی خانه‌های بافت قدیم شهر رشت، نشریه هنرهای زیبا- معماری و شهرسازی، شماره 41، بهار 1389، صص 29-42
صادقی هاجر، کردجمشیدی ماریا، رفعت جاه آریا (1393) بررسی مصالح بومی مورد استفاده در سقف خانه‌های مسکونی منطقه معتدل و مرطوب حاشیه دریای خزر، دومین مایش ملی هنر تبرستان:معماری بومی، دانشگاه مازندران، بابلسر.
راهب، غزال (1393)  گونه‌شناسی پهنه‌های شکل‌گیری مسکن در سکونتگاههای روستایی ایران در تعامل با عوامل محیطی، نشریه هنرهای زیبا- معماری و شهرسازی، دور 19، شماره 4، صص 87-100
عسکری رابری اباصلت، عباس زاده شهاب، آبرون علی اصغر (1394)  بررسی عناصر فضایی- کالبدی تاثیرگذار بر مسکن روستایی، مجله پژوهش و برنامه‌ریزی روستایی، شماره 4، زمستان 1394، صص     177-193
فتاحی احدالله، پورطاهری مهدی، رکن الدین افتخاری عبذالرضا (1395) ارزیابی فضایی- کالبدی مسکن پایدار روستایی: مطالعه موردی روستاهای استان لرستان، فصلنامه علمی پژوهشی برنامه‌ریزی و آمایش فضا، دوره 20، شماره 4، صص 139-17
میرکتولی جعفر، قدمی مصطفی، مهدیان بهنمیری معصومه، محمدی سحر (1390) مطالعه و بررسی روند گسترش کالبدی- فضایی شهر بابلسر با استفاده از مدلهای آنتروپی شانون و هلدرن، چشم انداز جغرافیایی(مطالعات انسانی)، شماره 16 صص 115-133
نقیبی راد پرستو، کردجمشیدی (1393) به کارگیری مصالح بومی در صنعت ساختمان- راهکاری در جهت ارتقاء پایداری محیط زیست (نمونه موردی خانه‌های روستایی استان مازندران)، اولین همایش ملی زیست بوم پایدار و توسعه، اراک.
نیکقدم نیلوفر، الگوی فضاهای نیمه باز خانه‌های بومی دزفول بوشهر و بندر لنگه در ارتباط با مولفه‌های اقلیم محلی (1392)، نشریه هنرهای زیبا- معماری و شهرسازی، دوره 18، شماره 3 صص 69-80
Ahern, C., P. Griffiths, M. Oflaherty (2013). State of the Irish housing stock: Modelling the heat losses of Ireland's existing detached rural housing stock & estimating the benefit of thermal retrofit measures on this stock. Energy Policy, 55(Supplement C): 139-151.
Amasyali, K. and N. M. El-Gohary (2018). A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews, 81(Part 1): 1192-1205.
Ardente, F., Beccali, M., Cellura, M., & Mistretta, M. (2011). Energy and environmental benefits in public buildings as a result of retrofit actions. Renewable and Sustainable Energy Reviews, 15(1): 460-470.
Attia, S., Evrard, A., & Gratia, E. (2012). Development of benchmark models for the Egyptian residential buildings sector. Applied Energy, 94(Supplement C): 270-284.
Balaras, C. A., Gaglia, A. G., Georgopoulou, E., Mirasgedis, S., Sarafidis, Y., & Lalas, D. P. (2007). European residential buildings and empirical assessment of the Hellenic building stock, energy consumption, emissions and potential energy savings. Building and Environment, 42(3): 1298-1314.
Balaras, C. A., J. Lelekis, et al. (2017). High Performance Data Centers and Energy Efficiency Potential in Greece. Procedia Environmental Sciences, 38(Supplement C): 107-114.
Ballarini, I., Corrado, V., Madonna, F., Paduos, S., & Ravasio, F. (2017). Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology. Energy Policy, 105(Supplement C): 148-160.
Brady, L. and M. Abdellatif (2017). Assessment of energy consumption in existing buildings. Energy and Buildings, 149(Supplement C): 142-150.
Brecha, R. J., Mitchell, A., Hallinan, K., & Kissock, K. (2011). Prioritizing investment in residential energy efficiency and renewable energy: A case study for the U.S. Midwest. Energy Policy, 39(5): 2982-2992.
Caputo, P., Costa, G., & Ferrari, S. (2008). A method for heating consumption assessment in existing buildings: A field survey concerning 120 Italian schools. Energy and Buildings, 40(5): 801-809.
Caputo, P., G. Costa, et al. (2013). A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy, 55(Supplement C): 261-270.
D'Agostino, D., Cuniberti, B., & Bertoldi, P. (2017). Energy consumption and efficiency technology measures in European non-residential buildings. Energy and Buildings, 153(Supplement C): 72-86.
De Lieto Vollaro, R., Guattari, C., Evangelisti, L., Battista, G., Carnielo, E., & Gori, P. (2015). Building energy performance analysis: A case study. Energy and Buildings, 87(Supplement C): 87-94.
Desideri, U., Leonardi, D., Arcioni, L., & Sdringola, P. (2012). European project Educa-RUE: An example of energy efficiency paths in educational buildings. Applied Energy, 97(Supplement C): 384-395.
Famuyibo, A. A., Duffy, A., & Strachan, P. (2012). Developing archetypes for domestic dwellings: An Irish case study. Energy and Buildings, 50(Supplement C): 150-157.
Feng, G., Sha, S., & Xu, X. (2016). Analysis of the Building Envelope Influence to Building Energy Consumption in the Cold Regions. Procedia Engineering, 146(Supplement C): 244-250.
Filogamo, L., Peri, G., Rizzo, G., & Giaccone, A. (2014). On the classification of large residential buildings stocks by sample typologies for energy planning purposes. Applied Energy, 135(Supplement C): 825-835.
Fracastoro, G. V. and M. Serraino (2011). A methodology for assessing the energy performance of large-scale building stocks and possible applications. Energy and Buildings, 43(4): 844-852.
Galvin, R. and M. Sunikka-Blank (2013). Economic viability in thermal retrofit policies: Learning from ten years of experience in Germany. Energy Policy, 54 (Supplement C): 343-351.
Horváth, M. s., Kassai-Szoó, D., & Csoknyai, T. s (2016). Solar energy potential of roofs on urban level based on building typology. Energy and Buildings, 111(Supplement C): 278-289.
Hyde, R. (2000). Climate Responsive Design: A Study of Buildings in Moderate and Hot-Humid Climates. New York, E & FN Spon.
KoÅ¡ir, M., Capeluto, I. G., Krainer, A., & Kristl, Å. i. (2014). Solar potential in existing urban layouts - Critical overview of the existing building stock in Slovenian context. Energy Policy, 69(Supplement C): 443-456.
Kordjamshidi M, King S, Prasad D (2006). Why rating scheme always wrong? Regulatory frameworks for passive design and energy efficiency. International conference of PLEA, Geneva, Switzerland
Kordjamshidi, M. (2011). House Rating Schemes: From Energy to Comfort Base, Springer.
Kragh, J. and K. B. Wittchen (2014). Development of two Danish building typologies for residential buildings. Energy and Buildings, 68(Part A): 79-86.
Krichkanok, S. (1997). A Collaborative Approach to the Development of a House Energy Rating Scheme for Bangkok: A Pilot Project. FBE. Sydney, University of New South Wales.
Lee, J., Kim, J., Song, D., Kim, J., & Jang, C. (2017). Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons. Renewable and Sustainable Energy Reviews, 75(Supplement C): 1081-1088.
Majcen, D., Itard, L. C. M., & Visscher, H (2013). Theoretical vs. actual energy consumption of labeled dwellings in the Netherlands: Discrepancies and policy implications. Energy Policy, 54(Supplement C): 125-136.
Mechri, H. E., Capozzoli, A., & Corrado, V. (2010). USE of the ANOVA approach for sensitive building energy design. Applied Energy, 87(10): 3073-3083.
Muringathuparambil, R. J., Musango, J. K., Brent, A. C., & Currie, P (2017). Developing building typologies to examine energy efficiency in representative low-cost buildings in Cape Town townships. Sustainable Cities and Society, 33(Supplement C): 1-17.
Ouyang, J., Ge, J., & Hokao, K. (2009). Economic analysis of energy-saving renovation measures for urban existing residential buildings in China based on thermal simulation and site investigation. Energy Policy, 37(1): 140-149.
Perén, J. I., van Hooff, T., Leite, B. C. C., & Blocken, B. (2015). Impact of eaves on cross-ventilation of a generic isolated leeward sawtooth roof building: Windward eaves, leeward eaves and eaves inclination. Building and Environment, 92(Supplement C): 578-590.
Planning. (2006). New 5- Star Requirements: Making Your Home More Energy Efficient.   Retrieved  from: www.planning.sa.gov.au, at July, 2009,9:30:52
Rakuscek, A., M. S. Zavrl (2012). IEE TABULA- Typology approach for building stock energy assessment. Slovenia
Roberts, S. (2008). Altering existing buildings in the UK. Energy Policy, 36(12): 4482-4486.
Roulet, C.-A., Flourentzou, F., Labben, H. H., Santamouris, M., Koronaki, I., Dascalaki, E., et al (2002). ORME: A multicriteria rating methodology for buildings. Building and Environment, 37(6): 579-586.
Sartori, I., Wachenfeldt, B. r. J., & Hestnes, A. G. (2009). Energy demand in the Norwegian building stock: Scenarios on potential reduction. Energy Policy, 37(5): 1614-1627.
Schaefer, A. and E. Ghisi (2016). Method for obtaining reference buildings. Energy and Buildings, 128(Supplement C): 660-672.
 Soleymanpour, R., N. Parsaee, M. Banaei (2015). Climate Comfort Comparison of Vernacular and Contemporary Houses of Iran. Procedia - Social and Behavioral Sciences, 201(Supplement C): 49-61.
Sonderegger, R. C. (1978). Movers and stayers: The resident's contribution to variation across houses in energy consumption for space heating. Energy and Buildings, 1(3): 313-324.
Sousa, G., Jones, B. M., Mirzaei, P. A., & Robinson, D. (2017). A review and critique of UK housing stock energy models, modeling approaches and data sources. Energy and Buildings, 151(Supplement C): 66-80.
Szokolay, S. (1992). An energy rating system for houses. Energy-efficient Ratings and Standards for new houses. Brisbane, Queensland Energy Information Centre Department of Resource Industries.
Tavares, P. F. d. A. F., and A. M. d. O. G. Martins (2007). Energy efficient building design using sensitivity analysis -A case study. Energy and Buildings, 39(1): 23-31.
Theodoridou, I., Papadopoulos, A. M., & Hegger, M. (2011). Statistical analysis of the Greek residential building stock. Energy and Buildings, 43(9): 2422-2428.
Weiss, J., Dunkelberg, E., & Vogelpohl, T. (2012). Improving policy instruments to better tap into homeowner refurbishment potential: Lessons learned from a case study in Germany. Energy Policy, 44(Supplement C): 406-415.
Willrath, H. (1997). Thermal sensitivity of Australian houses to variations in building parameters. 35th Annual conference Australian and New Zealand Solar Energy Society, Canberra.
Willrath, H. (1998). Comparison of the Thermal Performance of Free Running and Conditioned Housing in the Brisbane Climate. Proceeding of the 32nd annual conference Australia and New Zealand Architectural Science Association, New Zealand.
Yang, G., Zheng, C. Y., & Zhai, X. Q. (2017). Influence analysis of building energy demands on the optimal design and performance of CCHP system by using statistical analysis. Energy and Buildings, 153(Supplement C): 297-316.
Zhai, Z. J. and Q. Y. Chen (2006). Sensitivity analysis and application guides for integrated building energy and CFD simulation. Energy and Buildings, 38(9): 1060-1068.
Zhao, D., McCoy, A. P., Du, J., Agee, P., & Lu, Y. (2017). Interaction effects of building technology and resident behavior on energy consumption in residential buildings. Energy and Buildings, 134(Supplement C): 223-233.