نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران.

2 دانشیار، دانشکده معماری و شهرسازی، دانشگاه کردستان، کردستان، ایران.

3 دکتری شهرسازی، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

با ارزیابی و پایش کمی و کیفی برنامه‌های مدیریت خطرپذیری و مدیریت بحران در گسترش حمل و نقل ریلی کلان شهر تهران و به تبع آن با بررسی میزان مخاطرات و آسیب‌پذیری شبکه ریلی کشور، خلأ ناشی از مدیریت هوشمند شهری در ابعاد برنامه‌ریزی کالبدی و فضایی کاملاً مشهود است. نکته بارز در مواجهه با بحران‌هایی همچون زمین‌لرزه و سیل در خطوط حمل و نقل زیرزمینی (مترو) عمدتاً وابسته به فرضیات آزمون و خطا ، پیروی از روش‌های مدیریت سنتی و ضعف در آینده‌نگری و آینده‌پژوهی است. در گسترش خطوط ریلی زیرزمینی، بررسی مطالعات زمین‌ساختی (تکتونیکی)، پهنه‌های لرزه‌خیز، تفاوت جنس زمین و مسیر گسل‌های شمال و جنوب تهران (پیش از بحران) و توجه به آسیب پذیری ایستگاه مترو و احتمال تشدید بحران با تخریب بافت فرسوده شهری، هنگام وقوع زلزله و سیل بسیار حائز اهمیت است. این مقاله، با تمرکز بر موضوع ارزیابی خطرپذیری و آسیب‌پذیری گسترش شبکه حمل و نقل ریلی و با رویکرد پایش مخاطرات کالبدی و فضایی ایستگاه‌های مترو انجام شده است. روش انجام کار ارزیابی خطرپذیری از طریق تنظیم فهرست سنجشی پژوهشگر ارائه شده است. بدین منظور سه ایستگاه نواب، تجریش و دروازه شمیران به عنوان ایستگاه ­های منتخب شبکه متروی تهران مورد مطالعه قرار گرفت. در انجام پژوهش، از روشی ترکیبی و مبتنی بر مطالعات کتابخانه‌ای، بررسی سوابق و مدارک، تکنیک دلفی، روش تحلیل سلسله مراتبی و روی‌هم‌گذاری لایه‌ها استفاده شده است. نتایج ارزیابی آسیب‌پذیری نشانگر آن بوده است که تمامی ایستگاه ها در محدوده آستانه خطر قرار دارند و نیازمند اتخاذ تدابیری هوشمند در تمامی مراحل قبل، حین و بعد از بحران زمین‌لرزه و به کارگرفتن راهکارهای مدیریتی و اجرایی به منظور کاهش آسیب‌های احتمالی می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Risk Assessment of Tehran Subway Stations During Earthquakes with an Approach to Reduce Physical Vulnerability Through Intelligent Urban Management(Case study: Tajrish, Darvazeh Shemiran, and Navab Subway Stations)

نویسندگان [English]

  • Esmaeil Shieh 1
  • kyoumars Habibi 2
  • Mehran Ehsani 3

1 Professor, School of Architecture and environmental Design, Iran University of Science and Technology, Tehran, Iran.

2 Associate Professor, School of Art and Architecture, University of Kurdistan, Kurdistan, Iran.

3 Ph.D in Urban Development (urban planning and design),School of Architecture and environmental Design, Iran University of Science and Technology,Tehran, Iran.

چکیده [English]

Extended Abstract
Lack of by intelligent management in physical and spatial planning is evident in the evaluation and monitoring of the quantity and the quality of disaster and risk management plans in rail transportation development of Tehran Metropolitan and, consequently, in examining the risks and vulnerability of the rail network in the country. Obviously, the crises such as earthquakes and floods on subway lines are largely dependent on trial and error hypotheses, traditional management practices, and poor future studies.
Regarding the tectonic studies, it seems that some factors such as seismic zones, differences in the soil types, changes in the north and south fault lines (before the disaster) of Tehran, the vulnerability of the subway stations, and the possibility of crisis exacerbation with the destruction of deteriorated urban fabrics during earthquake and flood are of vital importance in the development of underground railways. Focusing on earthquake vulnerability assessment and the role of intelligent risk management in the development of railway transportation network with an approach to monitor the physical and spatial hazards of subway stations, this research tries to access the information about fault lines, watercourses and subway stations of Tehran for intelligent monitoring of the crises, and identification of the nearest medical centers and urban open spaces regarding the type of crisis.
Therefore, three subway stations in Tehran (Tajrish, Darvazeh Shemiran, and Navab Subway Stations) were selected to be studied because of their locations in busy and important areas of Tehran, high level of passenger traffic, high land use density of the surrounding area, being located in three separate different areas, proximity to hazardous functions, year of construction, the station depth, proximity to main and secondary fault areas, and the distance from the watercourses.
In the research, a combination of research methods is used based on library studies, review of records and documents, Delphi technique2, hierarchical decision making method and layer overlap. First, the existing maps and field observations were scrutinized thoroughly in order to investigate and analyze the information. Next, the criteria for assessing the risks at Tehran subway stations were achieved based on experts’ opinion. Then appropriate maps for subway stations in the studied areas were proposed according to specific factors (fault, watercourse, deteriorated fabric, distance from the medical stations, …). These maps indicate the appropriateness of the stations in relation to the location and the function of the current stations. Regarding the various effects of different layers on the evaluation process, the weighted coefficient of each layer was calculated by analytical Hierarchy process (AHP). The number of layers in each category in terms of importance and the effect of each category on the evaluation process were also calculated respectively from the least to the most important as follows: The distance from the fault, the station depth, the distance from fire stations, the distance from the channel (weight 4); the number of regular stairs, the area of nearby open  spaces, the number of entrance and exit gates, the exit width, the number of emergency exits, the distance from medical centers, abundance of firefighting equipment, emergency ventilation, the density of the surrounding fabric, proximity to BRT lines, the existence of helicopter landing site, lack of upstream water resources, the number of passengers per day, proximity to high-rise structures, the age of the surrounding structures, the area of the deteriorated urban fabric, the bridge spans (weight 3); the number of escalators, the number of elevators, land slope at the station (slope stability), the existence of a realm for power supply facilities, the distance from fuel stations, the distance from adjacent stations, the desirability of passage network around the stations (fabric density), the existence of fine grains in the surrounding area (weight 2);  the existence of proper access, the distance to police station, proximity to hazardous functions, intersection with underground tunnels, the presence of peripheral organic passages, the skyline of the surrounding functions(weight 1).
The results of the risk assessment indicate that all stations are within the danger threshold and adopting smart management and executive solutions to reduce possible damage is essential. Based on the average score obtained from the analysis of the stations studied and their relevance to the risk index table, it is clear that all three stations are within the "risk threshold", which highlights the need for careful scrutiny of the issues increasing the risks art the stations. Based on the scores assigned to each of the studied stations, it was revealed that the "distance from the fault" and the "number of emergency exits" at Tajrish station had the lowest score (highest risk). In addition, at Darvazeh Shemiran and Navab stations, " the number of lifts" and "number of emergency exits" had the lowest score.
Still after years of extensive research on the key role of risk management in mitigating natural disasters (earthquakes and floods), the development of underground transportation network (subway) is less likely to follow methods of intelligent risk management, especially in cities such as Tehran where the deteriorated fabrics are at high risk due to the soil type, and the location of faults.  In examining the risk level of a subway station in an earthquake crisis, the distance from the fault, the depth of the station and the existence of a tunnel, each play a decisive role for intelligent management of the crisis. Also, the overlapping of other related data, reveals the dimensions, extent and severity of the crisis. Accordingly, in order to eliminate or reduce the effects of risk factors in the development of the underground transportation network, all the tectonic and seismic engineering considerations, including the material of the layers, proximity to the faults, land slopes, and groundwater should be considered from the early stage of feasibility studies, to the final stages of determining the route and location of subway stations. Since some subway stations are located in the vicinity of deteriorated fabrics or high-rise structures, the earthquake crisis might exacerbate with the collapse of the buildings and the obstruction of the surrounding routes. The dependence of subway facilities on city infrastructure is considered a weakness. Electrical, water, telephone and other facilities are completely dependent on ground installations, and if they are damaged in any situation (normal and critical), the entire subway network facilities will be disrupted; therefore, it is necessary to devise emergency and intelligent systems.

کلیدواژه‌ها [English]

  • Underground Transportation
  • Subway station
  • Intelligent Risk Management
  • earthquake
  • Assessment
  • Evaluation of Vulnerability Reduction
آل شیخ، علی اصغر و کاظمی، روح اله. (1386). مدیریت بحران زلزله و سوانح در خطوط راه آهن شهری تهران با استفاده از GIS، نهمین همایش حمل و نقل ریلی، تهران، انجمن حمل و نقل ریلی، دانشگاه علم و صنعت، https://www.civilica.com/Paper-RTC09-RTC09_006.html
احسانی، مهران (1398). "نقش مدیریت هوشمند در برنامه ریزی کالبدی شهر برای کاهش آثار زمین لرزه"، فصلنامه هویت شهر، دوره 13، شماره 2، صفحه 37-50.
احسانی، مهران (1384). "نقش برنامه‌ریزی شهری در مواجهه با بحران های طبیعی"، دومین همایش بین المللی علمی-تحقیقی مدیریت امداد و نجات، مؤسسه عالی علمی-کاربردی هلال ایران،تهران.
جوزی. علی (۱۳۹۱)، ارزیابی و مدیریت ریسک، انتشارات دانشگاه آزاد اسلامی واحد تهران شمال، ص۳۴۴.
حبیبی، کیومرث؛ پوراحمد، احمد؛ مشکینی، ابوالفضل؛ عسگری، علی و نظری عدلی، سعید. (1387)."تعیین عوامل سازه­ای/ ساختمانی موثر در آسیب‌پذیری بافت کهن شهری زنجان با استفاده از GIS  و Fuzzy Logic "، هنرهای زیبا، 33، صفحه 27-36.
شرکت بهره‌برداری راه‌آهن شهری تهران و حومه. (1393). برگرفته از وبسایت www.metro.tehran.ir تاریخ دسترسی 18/06/1397 ساعت 10:45:52.
شهانقی، کامران؛ صادقی، منا و حیدری، مجید. (1391). "شناسایی و اولویت‌بندی راهبردهای پیشگیری از بروز بحران‌های ناشی از زمین‌لرزه در شهر تهران با استفاده از روش سلسله مراتبی فازی"، فصلنامه دانش پیشگیری و مدیریت بحران، 4.
معاونت فنی و عمرانی شهرداری تهران. (1396).گزارش ادواری گسترش خطوط مترو تهران.
میسمی، حسین؛ کوسوی، پدرام و جلال، مصطفی.(1390). "بررسی اثر بارهای دینامیکی ناشی از انفجار و زمین‌لرزه بر تونل و ارائه پیشنهادات ویژه تونل‌های شهر تهران"، عمران و مقاوم‌سازی، 17.
European Commission.(2015). "Digital Agenda for Europe".
Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanović, N., & Meijers, E. (2007), Smart Cities: Ranking of European Medium-Sized Cities. Vienna, Austria: Centre of Regional Science (SRF), Vienna University of Technology. Available from; http://www.smartcities.eu/download/smart_cities_final_report.pdf.
Glaesser, D. 2003. Crisis management in the tourism industry, Oxford, Butterworth- Heinemann.
Hollands, R. G. (2008). Will the real smart city please stand up? City 12 (3), 303–320.
Japan international cooperation agency(JICA).(2004).the comprehensive master plan study on urban seismic disaster prevention and management for the greater Terhran area is the Islamic Republic of Iran, Final report (summary), Executive summary.
Kent, W., 2004, Muhlabauer Pipeline Risk Management Manual, Ideas, Techniques, and resources, New York, 77-700.
Komninos, Nicos (2013). "What makes cities intelligent?"In Deakin, Mark. Smart Cities: Governing, Modelling and Analysing the Transition. Taylor and Francis. p. 77. ISBN 978-1135124144.
Korbatov, A., Price-Madison, j., Wang, y., Xu, Y (2017), related disruption to the electric grid, Johns
Hopkins University, School of Advanced International Studies Energy, Resources and Environment Student Practicum, Swiss Reinsurance Company Ltd. Mythenquai 50/60 P.O. Box 8022 Zurich, Switzerland.
Odendaal, N. (2003). Information and communication technology and local governance: Understanding the difference between cities in developed and emerging economies. Computers, Environment and Urban Systems, 27(6), 585-607.
Rashed, K and Weeks, J. (2003)”Assessing vulnerability to earthquake hazards through spatial International Journal of Geographic Information Science multicriteria analysis of urban areas”, Vol. 17, no. 6: 547-576.
Vasseur, J. (2010). Smart cities and urban networks, In Vasseur, J. & Dunkels, A. (Eds.), Interconnecting Smart Objects with IP: The Next Internet (pp. 360-377). Burlington, MA: Morgan Kaufmann.