نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد معماری و انرژی، دانشکده معماری و شهرسازی، دانشگاه شهید بهشتی، تهران، ایران.

2 استادیار، دانشکده معماری و شهرسازی، دانشگاه شهید بهشتی، تهران، ایران.

3 دانشیار، دانشکده معماری و شهرسازی، دانشگاه شهید بهشتی ، تهران، ایران.

چکیده

ارزیابی شاخص های کیفیت محیطی داخلی، در کاربری‌های حساسی مانند ساختمان‌های درمانی، نقش مهمی را در حفظ سلامت، رضایت و بهبود بیماران ایفا می‌کند. تنوع نیازهای مختلف بهره‌برداران (بیمار، همراه بیمار و کارمندان)، و شرایط فیزیولوژیکی و حساسیت های ذهنی ایشان، اهمیت انتخاب روش مناسب مطالعه این کاربری را افزایش می‌دهد. هدف این پژوهش بررسی کیفیت محیط داخلی اتاق استراحت بیمار به منظور شناخت مهمترین شاخص کیفیت محیط داخلی تاثیر گذار بر رضایت کاربر و مقایسه شرایط محیطی با استانداردهای موجود در این زمینه است. در پژوهش حاضر از دو روش اندازه‌گیری میدانی داده‌های فیزیکی و پرسشنامه رضایتمندی کاربر، بصورت همزمان برای سنجش کیفیت محیط داخلی بیمارستان مطابق پروتکل های بین المللی استفاده شده است. سنجش کیفیت محیط داخلی عموما با استفاده از 4 شاخصه ی اصلی حرارت، نور، صوت و کیفیت هوای داخلی مورد پژوهش قرار می‌گیرد. به این منظور در پنج بیمارستان واقع در شهر تهران482 پرسشنامه از بیماران و همراهان بیمار، جمع‌آوری شد. بر اساس نتایج بیشترین مطابقت با استاندارد در کیفیت هوای داخلی و کمترین در کیفیت صوتی بر اساس استاندارد سازمان جهانی بهداشت مشاهده شده است. نتایج نشان داده‌اند که، همبستگی قابل توجهی بین دو شاخص حرارتی و نوری، در ارتباط با جدار نور گذر اتاق استراحت بیمار، با کیفیت محیط داخلی وجود دارد که به ترتیب 0.59 و 0.42 است. این در حالی است که دو شاخص صوتی و کیفیت هوای داخل، باوجود میزان همبستگی بالا باکیفیت محیط داخلی (به ترتیب 0.62 و 0.67)، منبع داخلی دارد.کیفیت صوتیِ غالب نمونه‌های موردی خارج از حد استاندارد بودند لیکن 30 تا 40 درصد از کاربران، رضایت نسبی از وضعیت صوتی داشته اند. کیفیت روشنایی نیز، با توجه به روشنایی بیش‌ازحد استاندارد در غالب نمونه‌های موردی، میزان رضایت کاربران را به‌طور میانگین در بالاترین محدوده رضایت ثبت کرده است.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the Effective Environmental Factors on Patient and Companion

نویسندگان [English]

  • Hani Haddadzadegan 1
  • Zahra Sadat Zomorodian 2
  • Mohammad Tahsildoost 3
  • Shady Jamy 1

1 M.Sc, in Architecture and Energy, Faculty of Architecture and Urban Design, Shahid Beheshti University, Tehran, Iran.

2 Assistant Professor, Department of Building Science, Faculty of Architecture and Urban Design, Shahid Beheshti University, Tehran, Iran.

3 Associate Professor Department of Building Science, Faculty of Architecture and Urban Design, Shahid Beheshti University, Tehran, Iran.

چکیده [English]

Extended Abstract
Objective and Background: Various studies confirm that indoor environmental quality (IEQ) evaluation plays an important role in health, wellbeing, and satisfaction especially in healthcare facilities. On the other hand, these building types are among the major energy consumers. The variety of the users ‘requests (patient, patient companion, and staff), and their physiological conditions and mental sensitivities increases the importance of choosing the appropriate method of studying healthcare buildings. Previous studies have suggested many methods for assessing indoor environmental quality. Recent research has found IEQ to be largely influenced by Thermal comfort, acoustic comfort, lighting comfort, and indoor air quality. Also, due to the differences in perceptions of users with the limits set in the relevant standards and conditions in hospitals, questionnaire methods could help compare users' satisfaction with standards and real situations. The main purpose of this study is to evaluate the quality of the patient’s room indoor environment in order to identify the most important indoor quality index affecting user satisfaction and compare environmental conditions with existing standards such as American Society of Heating, Refrigerating and Air-Conditioning Engineers (Ashare) standard, world health organization (WHO) ,Iran standards and etc. in this field. in this regard,  physical measurements data of  environment parameters affecting the quality of indoor environment in medical centers were collected and then by comparing the results of the  users’ questionnaire  and physical measurements with related standards and  previous research, the most important factor influencing indoor  environment quality on patient’s room is identified and the relationship between the type of user which are separately  affected  by indoor conditions is expressed.
Methods: In the current study, based on the results of previously validated studies, measurement of physical data and users’ satisfaction via questionnaire are used to assess the hospitals’ indoor environment quality. Indoor environment quality evaluation is generally studied using the four main characteristics of thermal, lighting, acoustic and indoor air quality. Five hospitals in Tehran have been selected and IEQ has been evaluated. In this regard, 482 questionnaires were collected from patients and companions. In these questionnaires, four indices mentioned above, out of the total indices affecting indoor quality, were evaluated. At the same time, these indices have been compared using environmental characteristics such as dry air temperature, relative humidity, lighting intensity, and sound level intensity, carbon dioxide concentration (co2), fine particulate matter smaller than 2.5 micrometers (PM 2.5) concentration, simultaneously with the completion of the questionnaire by users in accordance with specific protocols, is done by the researcher.
findings: Based on the results, the highest compliance with the standard was observed in indoor air quality(IAQ) and the lowest in sound quality according to the standard of the World Health Organization(WHO). The results show that there is a significant correlation between the thermal and optical indices with respect to the wall of the patient's passage room with indoor quality which is 0.59 and 0.42, respectively. However, the two indices of acoustical quality and IAQ, despite their high correlation with indoor quality  (0.62 and 0.67, respectively), have an internal source. comparison of the frequency of case samples within the standard temperature range (23-26 ° C) with other cases shows an 11% increase in user dissatisfaction with non-compliance with this range.
Conclusion: In order to acoustical quality of the  most case samples is out of standard, but 30 to 40% of users have reported usual satisfaction with the sound condition. lighting quality, due to the excess of standard lighting intensity in most case samples, has recorded the average level of user satisfaction in the highest level. Also, comparison of the results of the users' satisfaction in the questionnaire with the standard range of the four indoor environmental quality indices indicated in the questionnaire indicated 100% compliance with indoor air quality, 68% with thermal status, 18% with lighting status. The results also showed that acoustic status had no significant relationship with standard range and user satisfaction conditions. Also, the dry air temperature factor in evaluating thermal quality is more effective than the relative humidity. Based on the data gathered from the statistics, a statistical model is presented to identify the status of user general satisfaction with IEQ based on environmental parameters.

کلیدواژه‌ها [English]

  • Indoor air quality
  • Thermal Quality
  • Lighting Quality
  • Acoustical Quality
  • Indoor Environment Quality(IEQ)

دفتر تدوین و ترویج مقررات ملی ساختمان، مبحث 13 مقررات ملی ساختمان: طرح و اجرای تاسیسات برقی ساختمان ها، 1388،تهران، ایران

دفتر تدوین و ترویج مقررات ملی ساختمان، مبحث18  مقررات ملی ساختمان: عایق بندی و تنظیم صدا،1392،تهران، ایران

دفتر تدوین و ترویج مقررات ملی ساختمان، مبحث 19 مقررات ملی ساختمان: صرفه جویی در مصرف انرژی، 1396، تهران، ایران

Al-Harbi, H. A. (2005). An Assessment Procedure for Acceptable Indoor Environmnetal Quality in Health Care Facilities. King Fahd University of Petroleum & Minerals.

Al-Rajhi, S., Ramaswamy, M., & Al Jahwari, F. (2012). IAQ in Hospitals - Better Health through Indoor Air Quality Awareness. In Tenth International Conference Enhanced Building Operations (pp. 37–39). kuwait: ICEBO - International Conference for Enhanced Building Operations. Retrieved from http://hdl.handle.net/1969.1/94139

Alzoubi, H., Al_Rqaibat, S., & Bataineh, R. (2010). Pre-versus post-occupancy evaluation of daylight quality in hospitals. Building and Environment, 45, 2652–2665.

Ampt, M., Harris, P., & Wise, M. (2008). The Health Impacts of the Design of Hospital Facilities on Patient Recovery and Wellbeing, and Staff Wellbeing: A Review of the Literature.

ASHRAE. (2004). ANSI/ASHRAE Standard 55. Atlanta, USA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

ASHRAE. (2010). ASHRAE Guideline 10P. Atlanta, USA: American Society of Heating, Refrigeration, and Air-conditioning Engineers, Inc.

Azizpour, F., Moghimi, S., Lim, C. H., Sohif, M., Salleh, E., & Sopian, K. (2013). A Thermal Comfort Investigation of a Facility Department of a Hospital in Hot-Humid Climate: Correlation between Objective and Subjective Measurements. Indoor and Built Environment, 22, 836–845.

Balaras, C., Dascalaki, E., & Gaglia, A. (2007). HVAC and indoor thermal conditions in hospital operating rooms. Energy and Buildings, 39, 454–470.

Boubekri, M. (2008). Summary for Policymakers. In Intergovernmental Panel on Climate Change (Ed.), Climate Change 2013 - The Physical Science Basis (pp. 1–30). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004

Boyce, P. R. (2003). Human factors in lighting. Chapter 5 Lighting and Visual Discomfort, 162–191.

Choi, J.-H., O. Beltran, L., & Kim, H.-S. (2012). Impacts of indoor daylight environments on patient average length of stay (ALOS) in a healthcare facility. Building and Environment, 50, 65–75.

Croitoru, C., Andreea, V., Bode, F., & Angel, D. (2013). Survey Evaluation of the Indoor Environment Quality in a Large Romanian Hospital. INCAS BULLETIN (Vol. 5).

Dascalaki, E., Gaglia, A., Balaras, C., & Lagoudi, A. (2009). Indoor environmental quality in Hellenic hospital operating rooms. Energy and Buildings, 551–560.

De Giuli, V., Da Pos, O., & De Carli, M. (2012). Indoor environmental quality and pupil perception in Italian primary schools. Building and Environment, 56, 335–345.

De Giuli, V., Zecchin, R., Salmaso, L., Corain, L., & De Carli, M. (2013). Measured and perceived indoor environmental quality: Padua Hospital case study. Building and Environment, 59, 211–226. https://doi.org/10.1016/j.buildenv.2012.08.021

Dorasol, N., Mohammad, I. S., & Hakim, A. (2012). Post occupancy evaluation performance criteria and parameters for hospital building in Malaysia. 3rd International Conference on Business and Economic Research (3rd ICBER 2012) Proceeding, 2650–2668.

Fransson, N., Västfjäll, D., & Skoog, J. (2007). In search of the comfortable indoor environment: A comparison of the utility of objective and subjective indicators of indoor comfort. Building and Environment, 42(5), 1886–1890. https://doi.org/https://doi.org/10.1016/j.buildenv.2006.02.021

Guyon, D. (2008). Daylight Dividends Case Study: Smith Middle School, Chapel Hill, N.C. Journal of Green Building, 1, 33–38.

Hagerman, I., Rasmanis, G., Blomkvist, V., Ulrich, R., Anne Eriksen, C., & Theorell, T. (2005). Influence of intensive coronary care acoustics on the quality of care and physiological state of patients. International Journal of Cardiology, 98(2), 267–270. https://doi.org/10.1016/j.ijcard.2003.11.006

Heinzerling, D., Schiavon, S., Webster, T., & Arens, E. (2013). Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. Building and Environment. https://doi.org/10.1016/j.buildenv.2013.08.027

Hua, Y., Oswald, A., & Yang, X. (2011). Effectiveness of daylighting design and occupant visual satisfaction in a LEED Gold laboratory building. Building and Environment - BLDG ENVIRON, 46, 54–64.

Huang, L., Zhu, Y., Ouyang, Q., Cao, B. (2012). A Study On The Effects Of Thermal, Luminous, And Acoustic Environ... - IIDA. Bibliographical Information, 304–309. Retrieved from http://knowledgecenter.iida.org/AssetDetails.aspx?assetGuid=ef860b41-a595-4db0-9336-b5c120640ecb%7B&%7DBackToPage=search.aspx

Hwang, R.-L., Lin, T. P., Cheng, M. J., & Chien, J. H. (2007). Patient thermal comfort requirement for hospital environments in Taiwan. Building and Environment, 42, 2980–2987.

Institution, B. S. (2007). BS EN 15251. London: British Standard Institution (BSI) Publication.

Institution, B. S. (2012). BS EN ISO 28802. British Standard Institution (BSI) Publication.

Joseph, A., & Ulrich, R., & Ulrich, R. (2007). Sound control for improved outcomes in healthcare settings. The Health Center for Health Design, (4), 1–15. Retrieved from www.healthdesign.org/sites/default/files/Sound Control.pdf

Kibert, C. (2005). Sustainable Construction: Green Building Design and Delivery.

Koster, H. (2004). Dynamic Daylighting Architecture Basics, Systems, Projects. BIRKHÄUSER, 463.

Lai, A. C. K., Mui, K. W., Wong, L., & Y. Law, L. (2009). An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings. Energy and Buildings - ENERG BLDG, 41, 930–936.

Ma, H., Du, N., Yu, S., Lu, W., Zhang, Z., Deng, N., & Li, C. (2017). Analysis of typical public building energy consumption in northern China. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2016.11.037

Mahbob, N., Kamaruzzaman, S. N., Salleh, N., & Sulaiman, R. (2011). A Correlation Studies of Indoor Environmental Quality(IEQ) Towards Productive Workplace. 2nd International Conference on Environmental Science and Technology, 6, 434–438.

Mazar, S. (2005). Stop the noise: reduce errors by creating a quieter hospital environment. Patient Safety and Quality Healthcare, 1–4.

Mazar, S. (2012). Creating a Culture of Safety : Reducing Hospital Noise. Biomedical Instrumentation & Technology / Association for the Advancement of Medical Instrumentation, 46, 350–355.

Mendes, A. C. P. (2008). Indoor Air Quality in Hospital Environments. Barcelona: In 20th Congress of IFHE. XXVI Seminario de IH, Congreso Nacional.

Ng, K. W. (2011). Green Healthcare Facilities : Assessing the Impacts of Indoor Environmental Quality on the Working Environment from the Perspective of Health Care Workers. PhD Thesis. The University of New South Wales, Sydney.

Nimlyat, P. S., & Kandar, M. Z. (2015). Appraisal of indoor environmental quality (IEQ) in healthcare facilities: A literature review. Sustainable Cities and Society, 17, 61–68. https://doi.org/10.1016/j.scs.2015.04.002

Norbäck, D., & Nordström, K. (2008). Sick building syndrome in relation to air exchange rate, CO2, room temperature and relative air humidity in university computer classrooms: An experimental study. International Archives of Occupational and Environmental Health, 82, 21–30.

Nordström, K. (a), Norbäck, D. (b), & Akselsson, R. (a). (1995). Subjective Indoor Air Quality in Hospitals - The Influence of Building Age, Ventilation Flow, and Personal Factors. Indoor Environment, 4, 37–44. https://doi.org/10.1159/000463604

O’Neal, C. (2000). Infection control; Keeping diseases at bay a full-time effort for healthcare professionals. Infection Control, 36–48.

Organization, M. and planning. (2004). Health Building design:design guide for mechanical services of medical surgical care unites. Islamic republic of Iran: Management and planning Organization (M.P.O.).

Pourshaghaghy, A., & Omidvari, M. (2012). Examination of thermal comfort in a hospital using PMV-PPD model. Applied Ergonomics, 43, 1089–1095.

Sadatsafavi, H., Walewski, J., & Shepley, M. M. (2015). Factors influencing evaluation of patient areas, work spaces, and staff areas by healthcare professionals. Indoor and Built Environment, 24(4), 439–456. https://doi.org/10.1177/1420326X13514868

Sakhare, V. V., & Ralegaonkar, R. V. (2014). Indoor environmental quality: review of parameters and assessment models. Architectural Science Review, 57(2), 147–154. https://doi.org/10.1080/00038628.2013.862609

Salonen, H., Lahtinen, M., Lappalainen, S., Nevala, N., D. Knibbs, L., Morawska, L., & Reijula, K. (2013). Design approaches for promoting beneficial indoor environments in healthcare facilities: A review. Intelligent Buildings International, 5, 26–50.

San José-Alonso, J. ., Velasco-Gomez, E., Rey-Martı́nez, F. ., Alvarez-Guerra, M., & Gallego Peláez, C. (1999). Study on environmental quality of a surgical block. Energy and Buildings, 29(2), 179–187. https://doi.org/10.1016/S0378-7788(98)00058-9

Skoog, J., Fransson, N., & Jagemar, L. (2005). Thermal environment in Swedish hospitals: Summer and winter measurements. Energy and Buildings, 37, 872–877.

Stephen Nimlyat, P. (2016). PATIENT’S SATISFACTION OF INDOOR ENVIRONMENTAL QUALITY In HOSPITAL WARDS IN JOS NIGERIA. tecknology of malaysia. https://doi.org/10.13140/RG.2.2.27114.93126

Sundell, J. (1999). Indoor Air Sciences: A Defined Area of Study or a Field to be Defined.

Ulrich, R. S., Quan, X., Zimring, C., Joseph, A., & Choudhary, R. (2004). The Role of the Physical Environment in the Hospital of the 21 st Century : A Once-in-a- Lifetime Opportunity. Designing the 21st Century Hospital Project. Retrieved from www.saintalphonsus.org/pdf/cah_role_physical_env.pdf

Ulrich, R. S., Zimring, C., Zhu, X., DuBose, J., Seo, H.-B., Choi, Y.-S., … Joseph, A. (2008). A Review of the Research Literature on Evidence-Based Healthcare Design. HERD: Health Environments Research & Design Journal, 1(3), 61–125. https://doi.org/10.1177/193758670800100306

Uścinowicz, P., Chludzińska, M., & Bogdan, A. (2015). Thermal environment conditions in Polish operating rooms. Building and Environment, 94(P1), 296–304. https://doi.org/10.1016/j.buildenv.2015.08.003

Verheyen, J., Theys, N., Allonsius, L., & Descamps, F. (2011). Thermal comfort of patients: Objective and subjective measurements in patient rooms of a Belgian healthcare facility. Building and Environment, 46, 1195–1204.

Wang, F.-J., Lee, M., Cheng, T., & Law, Y. (2012). Field evaluation of thermal comfort and indoor environment quality for a hospital in a hot and humid climate. Hvac&r Research, 18, 671–680. https://doi.org/10.1080/10789669.2012.644102

Wong, L., Mui, K. W., & S. Hui, P. (2008). A multivariate-logistic model for acceptance of indoor environmental quality (IEQ) in offices. Building and Environment, 43, 1–6.

Wong, S. K., Lai, L., Ho, D., Wing, C. K., Lam, C., & Hung-Fai Ng, C. (2009). Sick building syndrome and perceived indoor environmental quality: A survey of apartment buildings in Hong Kong. Habitat International, 33, 463–471.

Xuan, X. (2016). Effectiveness of indoor environment quality in LEED-certified healthcare settings. Indoor and Built Environment, 25(5), 786–798. https://doi.org/10.1177/1420326X15587564

Yau, Y. H., & Chew, B. T. (2009). Thermal comfort study of hospital workers in Malaysia. Indoor Air, 19(6), 500–510. https://doi.org/10.1111/j.1600-0668.2009.00617.x

Yau, Y. H., Chew, B. T., & Saifullah, A. Z. A. (2012). Studies on the indoor air quality of Pharmaceutical Laboratories in Malaysia. International Journal of Sustainable Built Environment, 1, 110–124.

Yoon, S.-H. (2008). Summary for Policymakers. In Intergovernmental Panel on Climate Change (Ed.), Climate Change 2013 - The Physical Science Basis (pp. 1–30). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004

Zhao, Y., & Mourshed, M. (2012). Design indicators for better accommodation environments in hospitals: Inpatients’ perceptions. Intelligent Buildings International, 4, 1–17.