نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری، گروه معماری، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.

2 استادیار، گروه معماری، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.

3 دانشیار، گروه معماری، دانشکده هنر و معماری، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.

چکیده

ایده تعمیق در طبیعت و توجه به نحوه رشد و شکل‌گیری پدیده‌های زیستی بجای تقلید از لایه‌های سطحی و شکلی، سابقه‌ای طولانی دارد. لیکن در عمل، توانایی علمی و فنی کافی برای اجرای آن وجود نداشته است. شاید بتوان دلیل آن را انتخاب سطحی موضوعات پیچیده و غیر قابل احاطه به لحاظ ضعف در زمینه‌های علمی و یا نبود امکانات فنی برای اجرا دانست. حال با عنایت به تحولات فنی و علمی در چند دهه اخیر امکان‌پذیری چنین رویکرد ماهیتی، دور از ذهن نمی‌باشد. ظهور نظریات و روش‌های رایانشی نوین بر گرفته از سیستم‌های زیست‌شناختی، در طی چند دهه اخیر، تعمیق در اصول و قواعد فرآیند تولید فرم را امکان‌پذیر نموده است. هدف مقاله حاضر بررسی چگونگی الگو‌سازی از فرآیندهای رشد و شکل‌گیری پدیده‌های زیستی در روشمند‌سازی فرآیند تولید فرم در حوزه معماری می‌باشد. یکی از الگوهای مطرح در فرآیند رشد پدیده‌های زیستی، الگوی رشد دیفرانسیلی می‌باشد. روش تحقیق در پژوهش پیش‌رو، بصورت توصیفی تحلیلی بوده و اطلاعات از طریق مطالعات کتابخانه‌ای و اسناد و مدارک، گردآوری شده‌اند. پس از مرور سوابق نظری و عملی رایانشی ملهم از اصول زیست‌شناختی و بررسی سیر تکوینی آن‌ها، با استفاده از روش تحقیق شبیه‌سازی با راهبرد استدلال منطقی، الگوی رشد دیفرانسیلی، در یک فرآیند تولید فرم معماری مورد آزمایش و بررسی قرار گرفت. به نحوی که طی یک آزمایش شبیه‌سازی، مدلی از الگوهای رشد در تولید فرم رایانشی ارایه گردید. نتایج آزمایش‌ها نشانمی‌دهد که شبیه‌سازی الگوریتمیک الگوهای رشد و شکل‌گیری پدیده‌های زیستی از مجرای رایانشی، در خلق روش‌های نوین فرآیند تولید فرم معماری می‌تواند مؤثر واقع گردد. 

چکیده تصویری

بررسی سیر تکوینی نقش رایانش در الگوسازی از فرآیندهای شکل‌گیری پدیده‌های طبیعی در تولید فرم معماری

تازه های تحقیق

- با استفاده از الگوریتم‌هایی برای شبیه‌سازی الگوهای رشد پدیده‌های زیستی در رایانه، راه‌های جدیدی برای ساخت فرم‌های معماری پیدا می‌شود.
- با استفاده از مجموعه‌ای از قوانین در قالب کُد، می‌توان یک فرم معماری را در یک فرآیند خودسازماندهی تولید کرد.
- فرم‌هایی با پارامترها و الگوهای مختلف محیطی در فضای مجازی تولید می‌شود. اگر به شرایط پاسخ دهد در مسیر ساخت دیجیتال قرار می‌گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the Evolution of Computation Role in Simulating the Formation Process of Natural Phenomena for Generating Architectural Forms

نویسندگان [English]

  • Yashar Gharachamani Asl 1
  • Mohamad Baharvand 2
  • Sahar Toofan 3

1 Ph.D. Candidate in Architecture, Department of Architecture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.

2 Assistant Professor, Department of Architecture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.

3 Associate Professor, Department of Architecture, Faculty of Arts and Architecture, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

چکیده [English]

Extended Abstract
Background and Objectives: Thinking about nature and paying attention to how biological phenomena grow and take shape has a long history and is more valuable than superficial and formal imitation. But more scientific and technical ability is needed to implement it in practice. This may be due to the superficial selection of complex and unambiguous topics due to weaknesses in scientific fields or lack of technical facilities for implementation. Given the technical and scientific developments in recent decades, the possibility of such an inherent approach is not far from the mind. The emergence of new theories and computing methods derived from biological systems over the past few decades has made it possible to deepen the principles and rules of the form production process. The main question is: how can biological growth and formation patterns be used to methodize the process of producing architectural forms? The main purpose of this article is to investigate the modeling and growth processes in biological phenomena to be used in the methodization of the form production process in architecture. One of the patterns in the growth process of biological phenomena is the differential growth pattern.
Methods: The research method in the present research is descriptive-analytical, and data collection includes library studies and documents. First, the theoretical and practical backgrounds of computing inspired by biological principles and their evolutionary evolution were examined. Then, using a simulation research method with a logical reasoning strategy, different growth patterns were formed. Finally, during the process, the production of the architectural form was tested and examined. In a simulation experiment, a model of the growth pattern was presented in the production of computer forms. In the analytical part of the present study, considering the importance of the role of algorithmic thinking in modeling the growth process and the formation of biological phenomena for the computational production of an architectural form, a logical reasoning strategy was established to provide a logical thinking system for realizing a relationship between biological realities in the growth process. It has been used to form a general conceptual framework in order to describe the subject and formulate growth guidelines using the abstract values of producing architectural form. 
Findings: This research started with the classification and analysis of theories in the field of computing inspired by biological processes, according to the time hierarchy of their occurrence, then continued with the introduction of new computing methods inspired by biological principles. Finally, this research was completed using such theories and methods in the production of the digital form. The result is evidence of the historical and evolutionary course of such an approach from theory to practice. For more clarity, theories, methods, and manufacturing processes are presented below with an evolution timeline, which is a new step in this field of research. Achieving the ability to simulate computational theories demonstrates the possibility of modeling growth processes and the formation of biological phenomena in the process of producing an architectural form along a path called computing. In this process, the growth algorithm is programmed within the software environment and then equated. So that all the parameters affecting the formation and growth of the organism are identified and entered into the algorithm, and then the virtual growth process takes place. The result of such an algorithm is the application of the construction method of these organisms to architectural projects and the use of the characteristics of that organism to increase the efficiency of space. In this process, architecture can inherit the qualities that the process of natural products has given to the organism and imitate them in their appearance and form, as well as in their function and behavior.. 
Conclusion: The form of the process is first generated in the virtual environment by entering various environmental parameters as well as various growth patterns. Then, if it responds to the mentioned environmental conditions and parameters, it will be placed in the path of digital manufacturing and built physically. As a result, the presence of such forms in the not-too-distant future in urban environments and architecture is still being determined. Therefore, the direction of research is more in the field of opinion. Nevertheless, attempts have been made in the field of architecture to create a new design logic based on the path of growth patterns. Naturally, this research is the beginning of further research in areas such as biology and algorithms. Subsequent researchers can examine and test other natural patterns, with a wider range of variables, in the algorithmic process, and step into the development of the research literature. The main result is that algorithmic simulation of growth patterns and the formation of biological phenomena through the computer channel can effectively create new methods for the architectural form production process.

کلیدواژه‌ها [English]

  • Biology
  • Growth Pattern
  • Differential Growth Algorithm
  • Computer Form Generation

این مقاله برگرفته از رساله دکتری نویسنده نخست با عنوان «همگرایی تکنولوژی و طبیعت در معماری هزاره سوم: بازشناسی الگوهای شکل‌گیری پدیده‌های طبیعی در معماری بیو دیجیتال» می‌باشد که به راهنمایی نویسنده دوم و مشاوره نویسنده سوم در دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان) انجام گرفته است.

This article is derived from the first author`s doctoral thesis entitled “The Convergence of Technology and Nature in Architecture of Third Millennium: Recognising of Natural Phenomenon Formation Patterns in Bio Digital Architecture ”, supervised by the second authors and advised by the third, at Islamic Azad University Isfahan (Khorasgan) branch.

  1. A &  Prusinkiewicz, P. (1990). The Algorithmic Beauty of Plants. New York: Springer-Verlag
  2. Abdullah, A.A., (2019), Computational Approach and Morphogenesis; Role of Nature in Concept Generation Processes in Design and Architecture, Journal of Design Studio, V.1, N.1, pp 22–28.
  3. Antonelli, P. Curator, S. (2020). Neri Oxman: Materialogy. New York: The Museum of Modern Art, New York
  4. Avalaible from: http//: fractalus.com [Accessed 3 January 2017]
  5. Beni, G. (2004). From swarm intelligence to swarm robotics. Paper presented at the International Workshop on Swarm Robotics.
  6. Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems (No. 1). Oxford University Press.
  7. Bosse, C. 2020. Available from: http://www.chrisbosse.com [Accessed 23 April 2020]
  8. Bovill, C. (1996). Fractal geometry in architecture and design.
  9. 1993. Simulation for planning and design. New York: Springer Science + Business Media
  10. Christos Stergiou and Dimitrios Siganos, "Neural Networks, " Surprise 96 (London: Imperial College of Science, Technology, and Medicine).
  11. Farahani, F. (2016). Man, nature, design: the reflection of nature in art and architecture. Isfahan: Publication of Gofteman-e-Andishe-ye-Moaser. [In Persian]
  12. Frazer, J. (1995). An evolutionary architecture. London: Architectural Association Publications.
  13. Frazer, J. H., Frazer, J. M., Liu, X., Tang, M. X. & Janssen, P. (2002). Generative and evolutionary techniques for building envelope design. 5th International Generative Art Conference.
  14. Frenay, R. (2008). Pulse: The coming age of systems and machines inspired by living things. Lincoln: University of Nebraska Press.
  15. Ghobadian, V. (2009). Principles and Concepts in Contemporary Western Architecture (12th edition). Tehran: Cultural Research Office. [In Persian]
  16. Golabchi, M. (2012). Interaction between technology and architecture: a review and critique of Norman Foster's works. Tehran: University of Tehran Press. [In Persian]
  17. Graph-Grammars and Their Application to Computer Science 291 (1987)
  18. Grout, L., & Wang, d. (2005). Research Method in Architecture, (Translator: Einifar, AR), Tehran: University of Tehran. Publishing Institute. [In Persian]
  19. Gruber, P. (2016). Bionic architecture (Biological Patterns in Architecture)., (Translator: Zare, M.), Tehran: University Jihad, Publishing Organization. [In Persian]
  20. Guidera, S. (2011). Conceptual Design Exploration in Architecture Using Parametric Generative Computing: A Case Study. Connecting Concepts in Sustainable Design and Digital Fabrication: A Project-Based Learning Case Study (pp. 2728–2748). Bowling green: American Society for Engineering Education.
  21. Hemberg, M. 2009. Genr8. Avalaible from: http: // projects. csail. mit .edu/emergentDesign/genr8 [Accessed 5 February 2017]
  22. Hensel, M. & Menges, A. (2008). Versatility and Vicissitude: An Introduction to Performance in Morpho-Ecological Design. Architectural Design, 2 (78): 6-11.
  23. Hensel, M. (2014). Performance-oriented architecture: rethinking architectural design and the built environment. John Wiley & Sons.
  24. Hensel, M. U. (Ed.). (2008). Versatility and vicissitude: performance in morpho-ecological design. Wiley.
  25. Hensel, M., Menges, A. & Weinstock, M. (2013). Emergent technologies and design: towards a biological paradigm for architecture: Routledge.
  26. Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267: 66-72.
  27. Ichmeli, M, (2014), Digital Morphogenesis in Architectural Design, Gediz University, Architecture Department.
  28. Iwamoto, L. (2009). Digital fabrications: architectural and material techniques. Princeton Architectural Press.
  29. Jamie, A. (2015). Mechanisms of Morphogenesis Elsevier’s Science & Technology Rights Department in Oxford, UK, Elsevier Academic Press.
  30. Kaboli, M.H. & Khandan, E. (2015). 101 Biomimicry Propositions in Architecture. Tehran: First and last Publications. [In Persian]
  31. Khabbazi, Z. (2014). Digital design processes. Mashhad: Kasra Library. [In Persian]
  32. Khabbazi, Z. (2016). Algorithmic architecture paradigm. Mashhad: Kasra Library. [In Persian]
  33. Khabbazi, Z. (2016). Digital material leakage. Mashhad: Kasra Library. [In Persian]
  34. Klooster, T. (2009). Smart surfaces–and their application in architecture and design. Germany: Birkhauser.
  35. Klooster, T. Boening, N. Davis, S. & Seeger, A. (2009). Smart surfaces: and their application in architecture and design Vol. 85 Birkhäuser Basel.
  36. Kudles, A. 2020. Matsys. Avalaible from: https: //www.matsys.design [Accessed 24 Mrach 2020]
  37. Kudless, A. Bodies in Formation: The Material Evolution of Flexible Formworks (2011). California College of the Arts.
  38. Leach, N. (2015). Digital cities. Architectural Design, 4 (79): 6–13.
  39. Mairopoulos, D. (2015). M-Cell assembly. Doctoral dissertation. Massachusetts Institute of Technology (MIT)
  40. Massachusetts Institute of Technology School of Architecture. 2020. Available from: http://www.architecture.mit.edu [Accessed 3 January 2019]
  41. Oxman, N. (2012). Toward a material ecology. In 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), San Francisco.
  42. Oxman, N. 2020. Materialecology. Avalaible from: https: //www.neri.media.mit.edu [Accessed 10 January 2019]
  43. Prusinkiewicz, P. (1986). Applications of L-systems to computer imagery. Paper presented at the International Workshop on Graph Grammars and Their Application to Computer Science.
  44. Qaruni Isfahani, F. (2015). Bionic architecture, nature's design. Tehran: Moallef. [In Persian]
  45. Rastogi, Manit., Rastogi, Sonali., (2017). Morphogenesis: The Indian Perspective. The global context Images Publishing Dist Ac, India
  46. Robert, A. W. & Frank, K. (2012). The MIT Encyclopedia of the Cognitive Sciences.
  47. Rosenman, M. & Gero, J. (1999). evolving designs by generating useful, complex gene structures. Evolutionary design by computers: 345.
  48. Sabin, J. 2020. Jenny Sabin Studio. Available from: https://www.jennysabin.com [Accessed 8 February 2020]
  49. Sabin, J.E., Lloyd Jones, P. (2017). LABSTUDIO: Design Research Between Architecture and Biology. London & New York: Routledge Taylor & Francis.
  50. Schmidt, P. Stattmann, N. (2009). UNFOLDED: Paper in Design, Art, Architecture, and Industry: Birkhäuser.
  51. Steadman, P. (2008). The Evolution of Designs: Biological Analogies in Architecture and the Applied Arts Routledge.
  52. Steadman, P. (2008). The Evolution of Designs: Biological Analogies in Architecture and the Applied Arts Routledge.
  53. Taraz, M. (2012). Bionic architecture (bio-industry), design of science and technology park. Master Thesis. Tehran: University of Tehran, Fine Arts Campus, Faculty of Architecture. [In Persian]
  54. Tedeschi, A. (2014). AAD, algorithm-aided design: parametric strategies using Grasshopper. Le Penseur publisher.
  55. Tonner, P.D, Darnell, C.L, Engelhardt, B.E, Schmid, A.K. (2016). Detecting differential growth of microbial populations with Gaussian process regression. Program in Computational Biology and Bioinformatics, Duke University, Durham, NC27708, USA.
  56. Turani, A.R. (2014). Theoretical foundations in third millennium architecture. Tehran: First and last publications.
  57. Wilson, R. A. & Keil, F. C. (2001). The MIT encyclopedia of the cognitive sciences. MIT press: 37-39.
  58. Winston. Patrick H. (1992). Artificial Intelligence. [In Persian]