نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد معماری، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استادیار، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

3 استادیار، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران.

4 استادیار، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

در دهه های اخیر به دنبال افزایش مصرف انرژی و استفاده بیش از حد از منابع تجدیدناپذیر در بخش ساختمان، گرمایش خورشیدی ایستا یکی از استراتژی های طراحی معماری برای استفاده کارآمد از انرژی می باشد. دیوار ترومپ و پدیده گلخانه ای از مهمترین سامانه های ایستا می باشند. این پروژه طی مطالعات آزمایشگاهی-میدانی به سنجش میزان تأمین انرژی در پنج حالت متفاوت از ترکیب دیوار ترومپ و پدیده گلخانه با اتاقک مورد نظر درشش ماه اول و دوم سال در اقلیم سرد وکوهستانی شهر اردبیل پرداخته است. حالت های مورد بررسی عبارتند از : اتصال دیوار ترومپ، اتصال پدیده گلخانه، اتصال ترکیب دیوار ترومپ و پدیده گلخانه، اتصال دیوار ترومپ و پنجره و اتصال دیوار ترومپ و پنجره و سایه بان به اتاقک مذکور. دراین پژوهش منظور عدم مصرف نیست بلکه هدف به کارگیری انرژی سبز و به حداقل رساندن مصرف انرژی از طریق جذب انرژی های تجدیدپذیر درساختمان می باشد که در این خصوص طراحی معماری می تواند نقش بسیار مهمی را داشته باشد. این پژوهش بصورت نیمه تجربی بوده و روش تحقیق شبیه سازی است. در راستای دستیابی به اهداف پروژه از نرم افزار تحلیل گر دیزاین بیلدراستفاده شده است . با توجه به جستار حاضر می توان دریافت که ازمیان گزینه های مختلف بکارگیری دیوار ترومپ وپدیده گلخانه ای، تعبیه دیوار ترومپ و سایه بان همراه با پنجره های مناسب در جداره جنوبی ساختمان با کسب امتیاز 25/83 دارای بهترین عملکرد در تأمین انرژی می باشد: میانگین دمای 20/67 درجه سانتیگراد در زمستان و میانگین دمای 22/84 درجه سانتیگراد در تابستان و دمای آسایش ( 18 تا 22 درجه سانتیگراد) در تمام ماه های سال و دریافت نور روز مناسب از شرایط این انتخاب می باشد. بنابراین با حفظ شرایط آسایش محیطی وکاهش مصرف انرژ یهای تجدیدناپذیر می توان در راستای دستیابی به پایداری زیست محیطی و همچنین کاهش هزینه ها قدم برداشت.

کلیدواژه‌ها

عنوان مقاله [English]

Performance Evaluation of the Passive Energy System (Trombe Wall and Conservatory) in Cold Climate for Energy Saving

نویسندگان [English]

  • Mahsa Ghadiri Moghadam 1
  • Vahid Vaziri 2
  • Hanieh Sanayeayan 3
  • Hojjatollah Rashid Kolvir 4

1 M.Sc. of Architecture, Department of Architecture Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

2 Assistant Professor, Department of Architecture Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

3 Assistant Professor, School of Architecture & Environmental Design, Iran University of Science & Technology, Tehran, Iran

4 Assistant Professor, Department of Architecture Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

چکیده [English]

In the recent century, due to the reduced energy consumption and excessive use of non-renewable resources in the building sector, passive solar heating is one of the architectural design strategies for efficient energy use. Trombe wall and Greenhouse are the most important passive systems. This project, by conducting field-laboratory studies, evaluated the energy consumption in five different models from the combination of a Trombe wall a the Greenhouse with a chamber in the first and second six months of the year in the cold climate of Ardabil city. In this research, the idea is not to consume, but to use green energy and minimize energy consumption through the absorption of renewable energy in the building, in this regard; architectural design can play a very important role. This research is semiexperimental and uses a simulation research method. In order to achieve the goals of the project, the Design Builder software has been used to analyze the conditions. According to the studies, it is realized that with the installation of the Trombe wall with window and adding shading to the southern side of the building, the average temperature will be 20/67°C in the winter and 22/84°C in summer, and the comfort
temperature will be 18-22°C in all months of the year. We can also receive a enough daylight during the day and we can achieve environmental sustainability and reduce costs apart from achieving comfort in the environment, and reducing non-renewable energies.

کلیدواژه‌ها [English]

  • energy consumption
  • Static systems
  • Trombe wall
  • Greenhouse systems
-     آذربایجانی، مونا (1382). مفهوم معماری پایدار، مجموعه مقالات همایش بهینه‌سازی مصرف سوخت در ساختمان؛ جلد1.
-     آیت اللهی، محمدحسین (1385). ارزیابی پنج ساله خانه خورشیدی. صفه شماره 43.
-     شهبازی رز، محمد (1392). واکاوی جایگاه سامانه‌های غیرفعال در معماری پایدار، همایش ملی معماری پایدار و توسعه شهری.
-     صفر‌علیپور، یلدا؛ شاهگلی، احمد (1392). مزیت ترکیب سیستم گلخانه خورشیدی و دیوارترومپ در طراحی اقلیمی مسکن امروز اصفهان، کنفرانس بین‌المللی عمران، معماری و توسعه پایدار شهری.
-     کسمایی، مرتضی (1382). اقلیم و معماری، ویراسته‌ی محمد احمدی‌نژاد، نشرخاک.
-     کیافر، طاهر (1390). طراحی ساختمان پایدار با سیستم دیوار آبی خورشیدی، دومین همایش معماری پایدار.
-      لکنر، نربرت (1385). گرمایش، سرمایش، روشنایی: رویکردهای طراحی برای معماران، ترجمه: محمدعلی کی‌نژاد و رحمان آذری، دانشگاه هنر اسلامی تبریز.
-     مداح, معصومه‌سادات؛ ترکجزی، میلاد (1391). معماری پایدار و شیوه‌های مؤثر در طراحی معماری پایدار، اولین همایش ملی توسعه پایدار در مناطق خشک و نیمه خشک.
-     مور  (1382). سیستم‌های کنترل محیط زیست (تنظیم شرایط محیطی در ساختمان)، ترجمه: رحمان آذری، ویراستار: سیدمجید مفیدی‌شمیرانی، دانشگاه هنر اسلامی تبریز، 528.
-     وکیلی‌نژاد، رزا؛ مهدیزاده سراج، فاطمه؛ مفیدی شمیرانی، سیدمجید (1392). اصول سامانه‌های سرمایش ایستا در عناصر معماری سنتی ایران، نشریه علمی- پژوهشی انجمن علمی معماری و شهرسازی ایران، 147-159.
-      Ana Briga Sa, José Boaventura-Cunha, João-Carlos Lanzinha, Anabela Paiva (2017). An experimental analysis of the Trombe wall temperature fluctuations for high range climate conditions: Influence of ventilation openings and shading devices , Energy and Buildings, Vol. 138, 546–558
-      Aurora Monge-Barrio, Ana Sanchez Ostiz (2015). Energy efficiency and thermal behaviour of attached sunspaces, in the residential architecture in Spain. Summer Conditions, Energy and Buildings 108.
-      Barrio-Amorós, Chacón-Ortiz, and F. J. M. Rojas- Runjaic (2015). First report of the salamanders Bolitoglossa leandrae and B. tamaense (Urodela, Plethodontidae) for Venezuela. Amphibian and Reptile Conservation.
-      Başak Kundakci Koyunbaba, Zerrin Yilmaz (2013). The performance comparison of fan-assisted Trombe wall system, The performance comparison of fan-assisted Trombe wall system, volume 10, 198-211.
-      Castelli , Trujillo, Vanneschi, L. , Popovič, A. (2015). Prediction of energy performance of residential buildings: A genetic programming approach. Energy and Buildings, 67-74.
-      Concessa, Concessao (2011). Environmental concerns for sustainable development. Environmental Science.
-      Damon Turney, Vasilis Fthenakis (2011). Environmental impacts from the installation and operation of large-scale solar power plants, Renewable and Sustainable Energy Reviews, 3261–3270
-      Dragicevicm, Lambic (2011). Influence of constructive and operating parameters on a modified Trombe wall efficiency, Archives of Civil and Mechanical Engineering, Volume 11, 825–838
-      Irshad, K., Habib, Thirumalaiswamy, N. (2015). Performance evaluation of PV-Trombe wall for sustainable building. 12th Global Conference on Sustainable Manufacturing
-      Kashif Irshad, Khairul Habib, Nagarajan Thirumalaiswamy (2015). Performance evaluation of PV-Trombe wall for sustainable building development, 12th Global Conference on Sustainable Manufacturing,12th, Procedia CIRP 26, 624 – 629
-      L Barniye Agyarko, Enayati, Nader, Mansoori, Ali (2016). Energy sources, Utilization, Legislation, Sustainability, Illinois As Model state
-      Nuno Simoes, Ines Simoes, Mario Manaia (2015). Study of Solar And Trombe Walls In A Mediterranean Climate, Installed In Residential Buildings, Congresso de Metodos Numéricos em Engenharia, Lisboa, 29 de Junho a 2 de Julho,1-16
-      Piyush Sharma, Sakshi Gupta (2016). Passive Solar Technique Using Trombe Wall - A Sustainable Approach, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 77-82
-      Shixin Cui, Moon Keun Kim (2016). A feasibility study of Trombe wall design in the cold region of China, International Conference on Indoor Air Quality Ventilation & Energy Conservation In Buildings, IAQVEC 2016, 9th,1-78
-      Shuangping Duan, Chengjun Jingb, Zhiqiang Zhao (2016). Energy and exergy analysis of different Trombe walls, Volume 126, 517–523
-      Torcellini, P., Pless, S. (2004). Trombe Walls in Low-Energy
-      Turney, D., & Fthenakis, V. (2011). Environmental impacts from the installation and operation of large-scale solar. Renewable and Sustainable Energy Reviews.
-      Zhongting Hu, Wei He, Jei Ji, Shengyao Zhang (2017). A review of application of trombe wall system on buildings, a review of application of trombe wall system on buildings, Volume 70, 976–987
-      Zohdi, Soghra, mohammadi sani, Ali (2015). Trombe Wall and Its Application for Disinfection of Indoor Air, Journal of Applied Environmental and Biological Sciences, ISSN: 2090-4274,186-190