نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران.

2 دانشیار، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران.

3 استاد، گروه معماری، دانشکده معماری، پردیس هنرهای زیبا، دانشگاه تهران، تهران، ایران.

چکیده

بر اساس آمار منتشره در حوزه انرژی، امروزه ساختمان ها به عنوان بزرگترین منبع مصرف انرژی شناخته می شوند. به این دلیل پیشرفت های فناوری در حوزه ساخت و ساز بیش از پیش به سمت راهکارهای نوین در جهت کاهش مصرف انرژی در این بخش تمرکز یافته اند. دستیابی به راه حل هایی همسو با محیط زیست در راستای حرکت به سمت توسعه پایدار در بخش معماری، مورد نظر معماران و طراحان قرار گرفته است. فناوری های تطبیق پذیر در پوسته های ساختمانی به منظور استفاده از انرژی های تجدید پذیر بخش مهمی از این دست تلاش ها را در بر می گیرد. پوسته های متشکل از صفحات فتوولتاییکی که از نور خورشید انرژی الکتریکی تولید می کنند، به عنوان بخشی حایز اهمیت در کاهش وابستگی ساختمان ها به انرژی های فسیلی شناخته می شوند. استفاده از تکنیک های کم هزینه و اثر بخش در زمینه ی معماری کمک شایانی به بهبود فرآیند ساخت نموده است. این تحقیق بر آنست تا تاثیر بهره گیری از تکنیک کاغذ و تا را در صفحات فتوولتایک به کار رفته در نمای ساختمان ها به منظور افزایش دریافت تابش خورشیدی بررسی کند. این امر با استفاده از نرم افزارهای شبیه ساز پارامتریک(گرسهاپر) و انرژی(لیدی باگ) انجام گرفته است. پس از تحلیل و بررسی کلی انواع مختلف روش های اوریگامی و نمونه های به کار گرفته شده در صنعت ساختمان و همچنین موارد موجود در طبیعت، 4 مورد به عنوان مدول های پایه برای بررسی بیشتر و مدلسازی در افزونه ی لیدی باگ نرم افزار گرسهاپر انتخاب شدند. مدول های شبیه سازی شده با استفاده از افزونه ی گالاپاگوس بر اساس الگوریتم ژنتیک بهینه سازی شدند تا بهینه ترین حالت آنها برای دریافت حداکثر میزان تابش خورشیدی به دست آید. نتایج این پژوهش نشان می دهد تغییر چینش وجوه مختلف صفحات فتوولتاییک با استفاده از تکنیک اوریگامی نسبت به مدول پایه ی یک متر مربعی عمودی در نمای جنوبی ساختمان، می تواند بین 3.44 تا 11.39 درصد میزان تابش دریافتی از خورشید را افزایش دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Analyzing the Use of Origami to Increase the Solar Radiation on Photovoltaic Panels Through Software Simulation

نویسندگان [English]

  • Amir Borzouei 1
  • Mahdi Zandieh 2
  • Shahin Heidari 3

1 PhD Candidate in Architecture, School of Architecture and Urbanism, International University Of Imam Khomeini, Qazvin, Iran.

2 Associate Professor, School of Architecture and Urbanism, International University of Imam Khomeini, Qazvin, Iran.

3 Professor, Department of Architecture, School of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran.

چکیده [English]

Extended Abstract
Objective and Background: According to statistics published in the field of energy, today, buildings are known as the largest consumers of energy. Hence, the technological advances in the field of construction increasingly focus on new solutions to reduce energy consumption in the building sector. Achieving environmentally friendly solutions in order to move towards sustainable development in the field of architecture has been considered by architects and designers. Using adaptable technologies in building shells for the use of renewable energy is an important solution. As one of the most important sources of renewable energy, the sun has a small share in producing clean energy in the building section so far. But in recent decades, scientists and designers have increasingly focused on this clean source of energy. One of the new ways to benefit from solar energy is the use of photovoltaic panels. Shells consisting of photovoltaic panels that generate electricity from sunlight are recognized as an essential solution to reduce the use of fossil fuels. The use of low-cost and effective techniques in the field of architecture has contributed significantly to the improvement of the construction process.
Methods: This study aims to investigate the effect of using folding techniques to choose the best angle of position for photovoltaic panels used on building facades to increase the solar radiation by using parametric (Grasshopper) and energy (Ladybug) simulation software. After a general analysis of different types of origami methods and the cases used in the construction industry, and the natural forms, four patterns were selected as the basic modules for further study and modeling by the Ladybug plugin in Grasshopper software. Based on the defined and conventional criteria (constructability, without shading, setting toward the sun), these samples could be used on vertical facades of buildings. The base module that can be placed on the vertical facade was modeled, and an extra module was defined based on the literature review on the optimal angle in Tehran latitude to maximize the received solar energy.
Findings: A total of 6 final samples were prepared to be simulated. The simulated modules were optimized based on a genetic algorithm using the Galapagos plugin to find the optimal position for receiving maximum solar radiation. This optimization was actually done based on the form parameters to find the most optimal form (a combination of angle and slope). This study seeks to answer the research questions: How can the solar radiation received in photovoltaic panels be increased by using geometric patterns based on the origami technique? In other words, how can the solar radiation be increased by changing the geometric arrangement of the photovoltaic panels according to the daily and annual solar movement patterns? The present study showed that the efficiency of photovoltaic panels is not improved only by using expensive technologies and solar trackers. The factor of change in solar radiation, which is the most important factor in receiving solar radiation during short and long periods of time, can be adjusted by accessible techniques such as the origami technique. In other words, by changing the angle of photovoltaic panels using computer technologies based on the solar movement, more solar energy can be received from radiation. This study shows that changing the arrangement of different photovoltaic panels using the origami technique compared to the base module on the southern facade can increase the received solar energy. The change of forms can increase the produced electrical energy from 3.44 and 11.39%.
Conclusion: According to this research, V-shaped (zigzag) modules can absorb more solar radiation due to the larger photovoltaic panels area. Although the amount of solar radiation per unit area decreases, their use is logically justified when the available surface area is limited. Also, the use of modules made with the help of the Miura origami method showed that it is possible to receive more solar radiation to some extent without using solar trackers or moving views at an economical cost because the different sides of these patterns are more able to absorb radiation over a long period of time (due to the variable daily and seasonal solar movement patterns).

کلیدواژه‌ها [English]

  • Photovoltaic Panels
  • origami technic
  • Energy Simulation
ثقفی محمد جواد ,اسدی خلجی مرتضی ,پوینده راضیه(1394). شیب بهینۀ گردآورهای خورشیدی و مقایسه با حالت نصب شده روی نمای جنوبی در تهران، هنرهای زیبا معماری و شهرسازی - 1389 ،44 ،57 -64
عباسی محمدرضا، طاهباز منصوره، وفائی راحیل(1395). معرفی سیستم نوین لایه های ساختمانی تغییرپذیر (فناوری نو در طراحی معماری اقلیمی). نقش جهان - مطالعات نظری و فناوری های نوین معماری و شهرسازی. ۵ (۲) :۴۳-۵۴
Alberti, L. T (2006 ).Flow around cylindrical towers: the stabilising role of vertical ribs. University of Stellenbosch.
Bougdah, H., & Sharples, S. (2009). Environment, Technology and Sustainability. Taylor & Francis
Chu, Ch. & Keong, CH. (2017(.  The Review on Tessellation Origami Inspired Folded Structure. AIP Conference Proceedings. View online: https://doi.org/10.1063/1.5005656
Deplazes, A. (2005) Constructing Architecture: Materials, Processes, Structures: A Handbook: 1st (First) Edition. Springer-Verlag New York, LLC.
Di Cristina, G. (2001). Architecture and Science. Chichester: Wiley-Academy.
Emrah Biyik, Mustafa Araz, Arif Hepbasli, Mehdi Shahrestani, Runming Yao, Li Shao, Emmanuel Essah, Armando C Oliveira, Teodosio del Caño, Elena Rico, Juan Luis Lechón, Luisa Andrade, Adélio Mendes, Yusuf Baver Atlı , (2017). A key review of building integrated photovoltaic (BIPV) systems, Engineering Science and Technology, an International Journal, 184.
Farsi Mohammadipour, A., (2010) The Best Architectural Form for BiPV in Tehran, Enviromental Sciences, 3, 55-62.
Ficca, J. (2015). Building Dynamics: Exploring Architecture of Change. Routledge,
Flectofin (2014) ITKE - Forschung. http://www.itke.uni-stuttgart.de/forschung.php?id=61,
Knaack, U. & Klein, T. (Eds.). (2009). The Future Envelope 2: Architecture, Climate, Skin (Vol. 9). IOS Press.
Krimm, J. , Techen, H. and Knaack, U. (2016). Tuning Acoustical Facade Designs Aiming for a Controlled Influence on the Urban Soundscape. In Proceedings of the Inter-Noise 2016, 45th International Congress and Exposition on Noise Control Engineering Pp. 2056–2063. Hamburg.
Kurrer, K.-E. (2012). The History of the Theory of Structures: From Arch Analysis to Computational Mechanics. John Wiley & Sons.
Lamoureux, A., Lee,K., Shlian,M., Forrest, S., and Shtein M., (2015). Dynamic Kirigami Structures for Integrated Solar Tracking. Nature Communications 6(8092): 6.
Loonen, R. (2010b) Climate adaptive building shells – What can we simulate?. MSc-Thesis, Eindhoven University of Technology.
Moloney, J. (2011). Designing kinetics for architectural facade: state change. Abingdon, Oxon!; New York!: Routledge.
Morgan, M., Robert, R., Lang, J., Magleby Spencer, P. and Howell, L., (2016). Towards Developing Product Applications of Thick Origami Using the Offset Panel Technique. All Faculty Publications. Paper 1619 2016(7): 69–77.
Moussavi, F. (2009). The Function of Form. ACTAR, Harvard Graduate School of Design,
Peters,S. (2014). Material Revolution. Sustainable and Multi-Purpose Materials for Design and Architecture, Basel, Birkhäuser.
Prasad, D. and M. Snow (2005). Designing with Solar Power. London: Earthscan.
Rinaldi, M. (2013). A as Architecture.
Salehi, M., Hamedi, M., Nohouji, H. S., & Arghavani, J. (2014). Mechanical properties identification and design optimization of nitinol shape memory alloy microactuators. Smart Materials and Structures, 23(2), 025001.
Sanchez, S. V. (2011). Solar Decathlon Europe 2010 - Towards Energy Efficient Buildings. http:// www.sdeurope.org/wp-ontent/uploads/downloads/2011/10/SOLAR-DECATHLONEUROPE- 2010.pdf.
Schittich, Ch. (2003).  Solar Rays: Strategies, Vision, Concept . München: Ed. Detail, Inst. For internet . Architecture Documentation.
Schmidt, P. and Stattmann, N. (2009) Unfolded. 1 edition. Basel, Birkhäuser Verlag
Tachi, T.  (2011). Rigid-Foldable Thick Origami. In Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education. Patsy Wang-Iverson, Robert J. Lang, and Mark Yim, eds. Pp. 253–264. , 5. Boca Raton: CRC Press.
Thün, G., Velikov, K., Ripley, K. (2012). Soundspheres: Resonant Chamber. In ACM SIGGRAPH 2012 Art Gallery Pp. 348–357. SIGGRAPH ’12. New York, NY, USA: ACM. http://doi.acm. org/10.1145/2341931.2341936ZigZagSolar
Tudorache, T., & Kreindler, L. (2010). Design of a solar tracker system for PV power plants. Acta Polytechnica Hungarica, 23-39.
ZigZagSolar (2015). http://zigzagsolar.com/, accessed December 12, 2017.