نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای معماری، گروه معماری، دانشکده هنر و معماری، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران.

2 استادیار، گروه معماری، دانشکده هنر و معماری، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران.

چکیده

امروزه استفاده از واقعیت مجازی به طور گسترده در زمینه‌های مختلف در حال افزایش است. در این تحقیق تاثیر استفاده تکنولوژی واقعیت مجازی (VR) درتحلیل معماری، میزان پذیرش بام سبز، به عنوان کمک ابزاری در روش تحقیق مورد مطالعه قرار گرفت. تحقیق حاضر با فرض این‌که تکنولوژی VR بر نتایج پذیرش بام سبز تاثیرگذار می‌باشد، ابتدا به بررسی پارامترهای مختلف بام سبز پرداخته و با بررسی ادبیات تحقیق به روش تحلیل منطقی و استدلال قیاسی عوامل تاثیرگذار بر پذیرش سقف‌های سبز ازقبیل: انتخاب نوع گیاه، آبیاری و بام سبز، عملکرد اجتماعی و عوامل موثر در ایجاد مزایای اقتصادی، زیست محیطی و اجتماعی، استخراج شد. با استفاده از این پارامترها مدل تحقیق و پرسشنامه طراحی گردید. بعد از تکمیل پرسشنامه توسط شرکت‌کنندگان با استفاده از عینک واقعیت مجازی به عنوان ابزاری کمکی در روش تحقیق، داده‌ها به دست آمده و به کمک نرم‌افزار اسمارت پی ال اس (Smart PLS)، تجزیه و تحلیل شد. نتایج نشان داد که عوامل ذکر شده نقش بسزایی در پذیرش بام سبز داشته است. همچنین قرار دادن شرکت‌کنندگان در محیط بام سبز به صورت مجازی، سبب شد تا آن‌ها نتایج دقیق‌تری با توجه به تجربه حضور در بام سبز ارائه دهند. همچنین نتایج نظرسنجی نشان داد، میزان مشارکت و اشتیاق شرکت‌کنندگان با پیشنهاد استفاده از عینک VR به طوری چشمگیری بالارفته و منجر به احساس خرسندی ازشرکت در آزمون شده است.

چکیده تصویری

تاثیرتکنولوژی واقعیت مجازی (VR) برنتایج پذیرش بام سبز درساختمان‌های مسکونی (مطالعه موردی: قائمشهر)

تازه های تحقیق

- بررسی میزان پذیرش بام سبز توسط پرسشنامه.
- استفاده تکنولوژی واقعیت مجازی VR به عنوان کمک ابزاری در روش تحقیق.
- بررسی پارامترهای مختلف بام سبز در ساختمان‌های مسکونی.

کلیدواژه‌ها

عنوان مقاله [English]

The impact of virtual reality (VR) technology on the results of green roof adoption in residential buildings; Case study: Qaemshahr

نویسندگان [English]

  • Elham Shokrinia Omrani 1
  • Raheleh Rostami 2

1 Ph.D. Candidate in Architecture, Department of Architecture, Sari Branch, Islamic Azad University, Sari, Iran.

2 Assistant Professor, Department of Architecture, Sari Branch, Islamic Azad University, Sari, Iran.

چکیده [English]

Extended Abstract
Background and Objectives: Today, the use of virtual reality in various fields is expanding rapidly. Although there is a lot of research on virtual reality technology in design and architecture education, the research on virtual reality (VR) technology in the architectural analysis as a tool in research methods is scarce. Due to the rapid growth of urbanization, cities around the world are becoming concrete jungles. Worldwide, the total urban population has surpassed the rural population. Rapid population growth and urbanization, coupled with limited biological resources, have been the cause of numerous environmental problems. Some solutions have been suggested to address urban environmental issues. The contribution of roof surfaces to environmental problems cannot be overlooked in this discussion because they cover many cities. Green roofs have been offered as an effective strategy for tackling these problems. Green roofs are very popular in many countries due to their sustainable benefits. Green roofs can help reduce the negative impacts of urbanization. This overview discusses green roofs and their effect on the energy consumption of buildings and living environments (aesthetic, ecological, and climate aspects), health, and quality of life — optimal parameters of green roofs.
Methods: In the present work, we pursued two aims. According to the literature review, the first aim of this research was to identify and describe the effective factors of adopting green roofs for residential buildings. The following factors were observed: economic, environmental, and social benefit, type of plant, type of irrigation, and extensive green roof type. The second aim was to study the impact of VR technology on green roof adoption. Virtual reality (VR) has become a valuable tool to study. We conducted a VR experiment with a total of 374 participants. The research findings based on SmartPLS support that selected factors positively influence the adoption of green roofs in residential buildings. In examining the impact of factors on the adoption of green roofs for residential buildings, the advantage of this methodology is that researchers can observe actual behavior.
Findings: Regardless of the type, green roofs have many advantages in urban environments, including aesthetic, ecological, climate-related, and health benefits, as well as improved quality of life. Furthermore, given that about 40% of global energy consumption is related to building construction and maintenance, green roofs can play a part in reducing the energy consumed for heating and cooling buildings. Moreover, while green roofs may use more energy for maintenance, there is evidence that their overall energy consumption is less than that of white roofs. Green roofs insulate buildings against the wind and sunlight, and the combination of the added insulation and evaporative cooling could decrease the cooling requirements inside the building. They also reduce the surface temperature of roofs, which can help ameliorate the UHI effect in cities. In addition, green roofs can help with stormwater management by reducing and slowing runoff and may help to reduce the pollutants that enter the surface water. Green roofs can also reduce lead concentrations in runoff and increase air quality, provide wildlife habitats for animal species, create beautiful city views, serve as cultivation spaces for food production, and reduce noise pollution from traffic. Urban green spaces can also have important benefits for social, mental, and physical health. People living in environments with more green spaces have better physical health and higher self-esteem and experience less stress, anxiety, and depression; as a result, they have better social and mental health than those with very few green spaces. Green spaces also provide opportunities to interact with nature and other people and can serve as recreational spaces. Finally, they can improve city residents’ well-being by reducing air pollution and facilitating physical exercise.
Conclusion: Finally, it was concluded that the mentioned factors played a significant role in adopting green roofs. Also, the results show that VR has many positive effects on the results of green roof adoption in residential buildings by creating a sense of presence in a virtual reality experience.

کلیدواژه‌ها [English]

  • Virtual Reality
  • Adoption
  • Green Roof
  • Residential Buildings

این مقاله برگرفته از رساله دکتری نویسنده نخست با عنوان «پارامترهای مطلوب  بام سبز در فضاهای مسکونی آپارتمانی اقلیم معتدل و مرطوب (مطالعه موردی قائمشهر)» می‌باشد که به راهنمایی نویسنده دوم در دانشگاه آزاد اسلامی واحد ساری، انجام گرفته است.

This article is derived from the first author`s Doctoral thesis entitled “Optimal parameters of green roof in residential spaces of temperate and humid climate (Case study of Qaemshahr)”, supervised by the second author, at Sari Islamic Azad University.

  1. Allen, I. E., Seaman, J., & Sloan Consortium. (2007). Online nation: five years of growth in online learning. Sloan-C.
  2. Ammann, J., Hartmann, C., Peterhans, V., Ropelato, S., & Siegrist, M. (2020). The relationship between disgust sensitivity and behavior: A virtual reality study on food disgust. Food Quality and Preference, 80. https://doi.org/10.1016/j.foodqual.2019.103833
  3. Arsham, H. (2011). Questionnaire Design and Surveys... - Google Scholar. (n.d.). Retrieved April 9, 2020, from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Arsham%2C+H.+%282011%29.+Questionnaire+Design+and+Surveys+Sampling.+Retrieved+July+24%2C+2013.&btnG=
  4. Bates, A. J., Sadler, J. P., & Mackay, R. (2013). Vegetation development over four years on two green roofs in the UK. Urban Forestry and Urban Greening, 12(1), 98–108. https://doi.org/10.1016/j.ufug.2012.12.003
  5. Berardi, U. (2016). The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy and Buildings, 121, 217–229. https://doi.org/10.1016/j.enbuild.2016.03.021
  6. Bertram, C., & Rehdanz, K. (2015). The role of urban green space for human well-being. Ecological Economics, 120, 139–152. https://doi.org/10.1016/j.ecolecon.2015.10.013
  7. Bianchini, F., & Hewage, K. (2012). Probabilistic social cost-benefit analysis for green roofs: A lifecycle approach. Building and Environment, 58, 152–162. https://doi.org/10.1016/j.buildenv.2012.07.005
  8. Bogicevic, V., Seo, S., Kandampully, J. A., Liu, S. Q., & Rudd, N. A. (2019). Virtual reality presence as a preamble of tourism experience: The role of mental imagery. Tourism Management, 74, 55–64. https://doi.org/10.1016/j.tourman.2019.02.009
  9. Botella, C., Fernández-Álvarez, J., Guillén, V., García-Palacios, A., & Baños, R. (2017). Recent Progress in Virtual Reality Exposure Therapy for Phobias: A Systematic Review. In Current Psychiatry Reports (Vol. 19, Issue 7). Current Medicine Group LLC 1. https://doi.org/10.1007/s11920-017-0788-4
  10. Boton, C. (2018). Supporting constructability analysis meetings with Immersive Virtual Reality-based collaborative BIM 4D simulation. Automation in Construction, 96, 1–15. https://doi.org/10.1016/j.autcon.2018.08.020
  11. Brudermann, T., & Sangkakool, T. (2017). Green roofs in temperate climate cities in Europe – An analysis of key decision factors. Urban Forestry and Urban Greening, 21, 224–234. https://doi.org/10.1016/j.ufug.2016.12.008
  12. Castiglia Feitosa, R., & Wilkinson, S. (2016). Modelling green roof storm water response for different soil depths. Landscape and Urban Planning, 153, 170–179. https://doi.org/10.1016/j.landurbplan.2016.05.007
  13. Catalano, C., Marcenò, C., Laudicina, V. A., & Guarino, R. (2016). Thirty years unmanaged green roofs: Ecological research and design implications. Landscape and Urban Planning, 149, 11–19. https://doi.org/10.1016/j.landurbplan.2016.01.003
  14. Clum, G. A., Broyles, S., Borden, J., & Watkins, P. L. (1990). Validity and reliability of the panic attack symptoms and cognitions questionnaires. Journal of Psychopathology and Behavioral Assessment, 12(3), 133–145.
  15. Conniff, A., & Craig, T. (2016). A methodological approach to understanding the wellbeing and restorative benefits associated with greenspace. Urban Forestry and Urban Greening, 19, 103–109. https://doi.org/10.1016/j.ufug.2016.06.019
  16. Cronbach, L. J., & Warrington, W. G. (1951). Time-limit tests: Estimating their reliability and degree of speeding. Psychometrika, 16(2), 167–188. https://doi.org/10.1007/BF02289113
  17. DeNardo, J. C., Jarrett, A. R., Manbeck, H. B., Beattie, D. J., & Berghage, R. D. (2005). Storm water mitigation and surface temperature reduction by green roofs. Transactions of the American Society of Agricultural Engineers, 48(4), 1491–1496. https://doi.org/10.13031/2013.19181
  18. Deng, X., Unnava, H. R., & Lee, H. (2019). “Too true to be good?” when virtual reality decreases interest in actual reality. Journal of Business Research, 100, 561–570. https://doi.org/10.1016/j.jbusres.2018.11.008
  19. Douglas, O., Lennon, M., & Scott, M. (2017). Green space benefits for health and well-being: A life-course approach for urban planning, design and management. Cities, 66, 53–62. https://doi.org/10.1016/j.cities.2017.03.011
  20. Dunnett, N., Nagase, A., Booth, R., & Grime, P. (2008). Influence of vegetation composition on runoff in two simulated green roof experiments. Urban Ecosystems, 11(4), 385–398. https://doi.org/10.1007/s11252-008-0064-9
  21. Eksi, M., Rowe, D. B., Fernández-Cañero, R., & Cregg, B. M. (2015). Effect of substrate compost percentage on green roof vegetable production. Urban Forestry and Urban Greening, 14(2), 315–322. https://doi.org/10.1016/j.ufug.2015.03.006
  22. Emilsson, T., Czemiel Berndtsson, J., Mattsson, J. E., & Rolf, K. (2007). Effect of using conventional and controlled release fertiliser on nutrient runoff from various vegetated roof systems. Ecological Engineering, 29(3), 260–271. https://doi.org/10.1016/j.ecoleng.2006.01.001
  23. Flavián, C., Ibáñez-Sánchez, S., & Orús, C. (2019a). The impact of virtual, augmented and mixed reality technologies on the customer experience. Journal of Business Research, 100, 547–560. https://doi.org/10.1016/j.jbusres.2018.10.050
  24. Flavián, C., Ibáñez-Sánchez, S., & Orús, C. (2019b). The impact of virtual, augmented and mixed reality technologies on the customer experience. Journal of Business Research, 100, 547–560. https://doi.org/10.1016/j.jbusres.2018.10.050
  25. Francis, L. F. M., & Jensen, M. B. (2017). Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban Forestry and Urban Greening, 28, 167–176. https://doi.org/10.1016/j.ufug.2017.10.015
  26. Gargari, C., Bibbiani, C., Fantozzi, F., & Campiotti, C. A. (2016). Environmental Impact of Green Roofing: The Contribute of a Green Roof to the Sustainable use of Natural Resources in a Life Cycle Approach. Agriculture and Agricultural Science Procedia, 8, 646–656. https://doi.org/10.1016/j.aaspro.2016.02.087
  27. Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. Communications of the Association for Information Systems, 16(1), 109–118.
  28. Ifinedo, P. (2011). An empirical analysis of factors influencing internet/e-business technologies adoption by smes in Canada. International Journal of Information Technology and Decision Making, 10(4), 731–766. https://doi.org/10.1142/S0219622011004543
  29. Jennett, T. S., & Zheng, Y. (2018). Component characterization and predictive modeling for green roof substrates optimized to adsorb P and improve runoff quality: A review. Environmental Pollution, 237, 988–999. https://doi.org/10.1016/j.envpol.2017.11.012
  30. Johannessen, B. G., Hanslin, H. M., & Muthanna, T. M. (2017). Green roof performance potential in cold and wet regions. Ecological Engineering, 106, 436–447. https://doi.org/10.1016/j.ecoleng.2017.06.011
  31. Lata, J. C., Dusza, Y., Abbadie, L., Barot, S., Carmignac, D., Gendreau, E., Kraepiel, Y., Mériguet, J., Motard, E., & Raynaud, X. (2018a). Role of substrate properties in the provision of multifunctional green roof ecosystem services. Applied Soil Ecology, 123, 464–468. https://doi.org/10.1016/j.apsoil.2017.09.012
  32. Lata, J. C., Dusza, Y., Abbadie, L., Barot, S., Carmignac, D., Gendreau, E., Kraepiel, Y., Mériguet, J., Motard, E., & Raynaud, X. (2018b). Role of substrate properties in the provision of multifunctional green roof ecosystem services. Applied Soil Ecology, 123, 464–468. https://doi.org/10.1016/j.apsoil.2017.09.012
  33. Madureira, H., Nunes, F., Oliveira, J. V., Cormier, L., & Madureira, T. (2015). Urban residents’ beliefs concerning green space benefits in four cities in France and Portugal. Urban Forestry and Urban Greening, 14(1), 56–64. https://doi.org/10.1016/j.ufug.2014.11.008
  34. Mahdiyar, A., Tabatabaee, S., Abdullah, A., & Marto, A. (2018). Identifying and assessing the critical criteria affecting decision-making for green roof type selection. Sustainable Cities and Society, 39, 772–783. https://doi.org/10.1016/j.scs.2018.03.007
  35. Mahdiyar, A., Tabatabaee, S., Sadeghifam, A. N., Mohandes, S. R., Abdullah, A., & Meynagh, M. M. (2016). Probabilistic private cost-benefit analysis for green roof installation: A Monte Carlo simulation approach. Urban Forestry and Urban Greening, 20, 317–327. https://doi.org/10.1016/j.ufug.2016.10.001
  36. Mattila, O., Korhonen, A., Pöyry, E., Hauru, K., Holopainen, J., & Parvinen, P. (2020). Restoration in a virtual reality forest environment. Computers in Human Behavior, 107. https://doi.org/10.1016/j.chb.2020.106295
  37. Mesimäki, M., Hauru, K., & Lehvävirta, S. (2019). Do small green roofs have the possibility to offer recreational and experiential benefits in a dense urban area? A case study in Helsinki, Finland. Urban Forestry and Urban Greening, 40, 114–124. https://doi.org/10.1016/j.ufug.2018.10.005
  38. Morakinyo, T. E., Kalani, K. W. D., Dahanayake, C., Ng, E., & Chow, C. L. (2017). Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy and Buildings, 145, 226–237. https://doi.org/10.1016/j.enbuild.2017.03.066
  39. Nagase, A., & Dunnett, N. (2013). Establishment of an annual meadow on extensive green roofs in the UK. Landscape and Urban Planning, 112(1), 50–62. https://doi.org/10.1016/j.landurbplan.2012.12.007
  40. Perini, K., & Rosasco, P. (2016). Is greening the building envelope economically sustainable? An analysis to evaluate the advantages of economy of scope of vertical greening systems and green roofs. Urban Forestry and Urban Greening, 20, 328–337. https://doi.org/10.1016/j.ufug.2016.08.002
  41. Portman, M. E., Natapov, A., & Fisher-Gewirtzman, D. (2015). To go where no man has gone before: Virtual reality in architecture, landscape architecture and environmental planning. Computers, Environment and Urban Systems, 54, 376–384. https://doi.org/10.1016/j.compenvurbsys.2015.05.001
  42. Qin, H. peng, Peng, Y. nuan, Tang, Q. ling, & Yu, S. L. (2016). A HYDRUS model for irrigation management of green roofs with a water storage layer. Ecological Engineering, 95, 399–408. https://doi.org/10.1016/j.ecoleng.2016.06.077
  43. Razzaghmanesh, M., Beecham, S., & Salemi, T. (2016). The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban Forestry and Urban Greening, 15, 89–102. https://doi.org/10.1016/j.ufug.2015.11.013
  44. Reddy, J. N., & Chin, C. D. (1998). Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6), 593–626. https://doi.org/10.1080/01495739808956165
  45. Sala, N. (2011). Virtual reality in architecture, in engineering and beyond. In Technology Engineering and Management in Aviation: Advancements and Discoveries (pp. 336–345). https://doi.org/10.4018/978-1-60960-887-3.ch020
  46. Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 90, 757–773. https://doi.org/10.1016/j.rser.2018.04.006
  47. Sisco, L., Monzer, S., Farajalla, N., Bashour, I., & Saoud, I. P. (2017). Roof top gardens as a means to use recycled waste and A/C condensate and reduce temperature variation in buildings. Building and Environment, 117, 127–134. https://doi.org/10.1016/j.buildenv.2017.02.025
  48. Squier, M., & Davidson, C. I. (2016). Heat flux and seasonal thermal performance of an extensive green roof. Building and Environment, 107, 235–244. https://doi.org/10.1016/j.buildenv.2016.07.025
  49. Tabatabaee, S., Mahdiyar, A., Durdyev, S., Mohandes, S. R., & Ismail, S. (2019). An assessment model of benefits, opportunities, costs, and risks of green roof installation: A multi criteria decision making approach. Journal of Cleaner Production, 238, 117956. https://doi.org/10.1016/j.jclepro.2019.117956
  50. Tang, X., & Qu, M. (2016). Phase change and thermal performance analysis for green roofs in cold climates. Energy and Buildings, 121, 165–175. https://doi.org/10.1016/j.enbuild.2016.03.069
  51. Tsang, S. W., & Jim, C. Y. (2016). Applying artificial intelligence modeling to optimize green roof irrigation. Energy and Buildings, 127, 360–369. https://doi.org/10.1016/j.enbuild.2016.06.005
  52. Van den Berg, M., Van Poppel, M., Van Kamp, I., Andrusaityte, S., Balseviciene, B., Cirach, M., Danileviciute, A., Ellis, N., Hurst, G., Masterson, D., Smith, G., Triguero-Mas, M., Uzdanaviciute, I., Wit, P. de, Van Mechelen, W., Gidlow, C., Grazuleviciene, R., Nieuwenhuijsen, M. J., Kruize, H., & Maas, J. (2016). Visiting green space is associated with mental health and vitality: A cross-sectional study in four european cities. Health and Place, 38, 8–15. https://doi.org/10.1016/j.healthplace.2016.01.003
  53. Verwulgen, S., Van Goethem, S., Cornelis, G., Verlinden, J., & Coppens, T. (2020). Appreciation of Proportion in Architecture: A Comparison Between Facades Primed in Virtual Reality and on Paper. Advances in Intelligent Systems and Computing, 973, 305–314. https://doi.org/10.1007/978-3-030-20476-1_31
  54. Waterworth, J. A., Waterworth, E. L., Riva, G., & Mantovani, F. (2015). Presence: Form, content and consciousness. In Immersed in Media: Telepresence Theory, Measurement and Technology (pp. 35–58). Springer International Publishing. https://doi.org/10.1007/978-3-319-10190-3_3
  55. Whittinghill, L. J., Bradley Rowe, D., & Cregg, B. M. (2013). Evaluation of vegetable production on extensive green roofs. Agroecology and Sustainable Food Systems, 37(4), 465–484. https://doi.org/10.1080/21683565.2012.756847
  56. Whittinghill, L. J., Rowe, D. B., & Cregg, B. M. (2013). Evaluation of Vegetable Production on Extensive Green Roofs. Agroecology and Sustainable Food Systems, 37(4), 465–484. https://doi.org/10.1080/21683565.2012.756847
  57. Wolfartsberger, J. (2019). Analyzing the potential of Virtual Reality for engineering design review. Elsevier. https://doi.org/10.1016/j.autcon.2019.03.018
  58. Zeng, C., Bai, X., Sun, L., Zhang, Y., & Yuan, Y. (2017). Optimal parameters of green roofs in representative cities of four climate zones in China: A simulation study. Energy and Buildings, 150, 118–131. https://doi.org/10.1016/j.enbuild.2017.05.079
  59. Zhou, Y., Clarke, L., Eom, J., Kyle, P., Patel, P., Kim, S. H., Dirks, J., Jensen, E., Liu, Y., Rice, J., Schmidt, L., & Seiple, T. (2014). Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework. Applied Energy, 113, 1077–1088. https://doi.org/10.1016/j.apenergy.2013.08.034