نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری، گروه معماری، دانشکده معماری، واحد ساری، دانشگاه آزاد اسلامی، ساری ، ایران.

2 استاد، دانشکده مهندسی معماری و شهرسازی، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران.

3 استادیار، گروه معماری، دانشکده معماری، واحد ساری، دانشگاه آزاد اسلامی، ساری ، ایران.

چکیده

از راهکارهای تاثیرگذار بر کاهش مصرف انرژی و مصرف سوخت های فسیلی در ساختمان و نیز کاهش اثرات نامطلوب زیست محیطی آن (افزایش انتشار گازهای گلخانه‌ای)، بکارگیری انرژی غیرفعال می‌باشد. نمای ساختمان‌های مسکونی به عنوان واسطه‌ی اصلی بین فضای داخلی و خارجی عنصر مهمی جهت کنترل تابش نور خورشید به محیط داخلی و کاهش مصرف انرژی هستند. در اقلیم گرم و مرطوب بوشهر مهم‌ترین پدیده و فرآیند مشهود اقلیمى گرماى هواست، از این رو بررسی راهکارهای اقلیمی جهت کنترل جذب و انتقال حرارت خوشید و کاهش بار سرمایش امری ضروری است. در پژوهش حاضر عملکرد حرارتی و میزان جذب و انتقال تابش خورشیدی به فضای داخل توسط نمای ساختمان آپارتمانی در اقلیم گرم و مرطوب بوشهر بررسی شد. سپس تاثیر راهکارهای طراحی نمای معماری بومی بوشهر بر کاهش دمای هوای داخلی ساختمان مورد بررسی قرار گرفته است. در راستای پاسخگویی به پرسش‌های تحقیق، شبیه‌سازی عملکرد حرارتی سایه‌اندازی، نسبت پنجره به دیوار و مصالح نما به شکل جداگانه بر ساختمان آپارتمانی انجام شد. متغیر بهینه جهت کاهش بار سرمایشی، انتخاب و بر ساختمان اعمال و رفتار حرارتی آن جهت بهبود عملکرد حرارتی ساختمان‌های آینده‌ی اقلیم گرم و مرطوب به عنوان ساختمان بهینه بررسی شد. شبیه‌سازی با استفاده از نرم‌افزار دیزاین بیلدر با موتور شبیه‌ساز انرژی پلاس و نرم‌افزار کلایمت کانسالتنت نسخه 55 و مدل آسایش حرارتی اشری انجام شده است. نتایج نشان می‌دهد که بهینه‌ترین حالت عملکرد نما با سایه‌اندازهای عمودی کرکره‌ای، پنجره مشبک و نمای سیمانی سفید با کاهش بار سرمایشی تا 38 درصد و کل بار مورد نیاز ساختمان تا 33 درصد می‌باشد.

چکیده تصویری

تبیین اصول طراحی نمای ساختمان‌های مسکونی اقلیم گرم و مرطوب در راستای کاهش دمای هوای داخلی مبتنی بر معماری بومگرا

تازه های تحقیق

- راهکارهای طراحی نما در معماری بومی بوشهر از جمله ابعاد بازشوها تأثیر قابل توجهی بر کنترل دمای هوای داخل ساختمان‌ها و کاهش تقاضای بار سرمایشی در ساختمان دارد.
- راهکارهای طراحی نما در معماری بوشهر از جمله نوع مصالح تأثیر قابل توجهی بر انتقال حرارت به فضای داخلی و کنترل دمای هوای داخلی دارد.
- در مناطق گرم و مرطوب با سایه‌اندازی در نماها به شکل شناشیر، عقب نشستگی، پیش‌آمدگی، ایوان موجب کنترل تابش خورشید و ایجاد سایه‌‌ها در سطوح می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Principles of Ecological Architecture for Designing Residential Building Facades in Hot and Humid Climates to Lower Indoor Air Temperature Based on Ecological Architecture

نویسندگان [English]

  • Zahra Mahdinejad Godarzi 1
  • Jamaluddin Mehdinejad Darzi 2
  • Fatemeh Mozaffari Qadikolaei 3

1 Ph.D. Candidate in Architecture, Department of Architecture, Sari Branch, Islamic Azad University, Sari, Iran.

2 Professor, School of Architecture and Urban Design, Shahid Rajaei Teacher Training University, Tehran, Iran.

3 Assistant professor, Department of Architecture, Sari Branch, Islamic Azad University, Sari, Iran.

چکیده [English]

Extended Abstract
Background and Objectives: Increasing fossil fuel consumption, on the one hand, along with their non-renewable nature, escalating costs, and the destructive environmental and economic effects of energy consumption, on the other hand, increase the need to use passive systems in buildings. One of the effective solutions to reduce energy consumption and consumption of fossil fuels in the building and also to reduce its adverse environmental effects (increasing greenhouse gas emissions) is the use of passive energy. The facade of residential buildings, as the main mediator between indoor and outdoor space, is an important element in controlling sunlight to the interior and reducing energy consumption. Two important strategies to improve the thermal performance of the building facade include shading devices that reduce annual energy consumption and provide better protection against glare. The second solution aims to investigate the effect of heat transfer or heat resistance of materials used in the building facade by controlling the effects of solar radiation and designing the facade under climate conditions, and reducing the heat transfer by choosing the right materials that can reduce the amount of domestic energy demand. The shape of the building, the orientation of the building, its external and internal walls and materials, the thermal insulation of the facade, the dimensions of the window, the ratio of the window to the wall, and the external shading device can be introduced as effective parameters in reducing energy consumption. Improving the performance of building facades is possible through facade materials, shading devices, and window-to-wall ratio structure. It is important to carry out practical investigations into the thermal efficiency of building facades in order to decrease the amount of energy used for cooling and heating buildings, which represents a significant portion of the world’s energy consumption. As a result, an architectural strategy that focuses on morphology (specifically, architectural morphology) should be examined.
Methods: In the hot and humid climate of Bushehr, the most significant climatic condition is excessive heat. Therefore, it is crucial to research climate-based solutions that can manage the transmission of undesirable heat and lessen the cooling requirements. This study focuses on exploring the thermal efficiency and the transfer of heat caused by solar radiation through building facades in the hot and humid climate of Bushehr. Additionally, it examines the impact of facade design strategies inspired by Bushehr’s native architecture on decreasing the indoor temperature of the building. The research variables that were examined include wooden shading devices (horizontal, vertical, lattice), porches, deep windows, facade materials, and window-to-wall ratio. Each variable has an effect on various types of energy consumption, such as electricity, heat, heating energy, and cooling, which were analyzed in the study. The purpose of this study is to investigate the relationship between independent and dependent variables and analyze their impact on each other. The study involved simulating each building for all twelve months of the year. This simulation included assessing the amount of solar radiation absorbed by building surfaces, its transfer to the interior, and the resulting cooling load demand. The findings are presented through separate diagrams. In the first step, the behavioral pattern of the building facade with respect to the north-south openness was examined to control and reduce the amount of sunlight received and also to reduce the indoor air temperature subsequently, the study extracted general patterns from indigenous facade components that were related to the structure and function of shading devices, facade materials, and their openings. To understand the historical context of shading devices in Bushehr, the various types of shades present in the buildings of this region were classified, and the different shading solutions used in Bushehr were identified. In line with the purpose of the research, it is necessary to test different types of shading devices as research variables. Then check the type of materials and the dimensions of the openings used in the facades.
Findings: To address the research questions, separate simulations were conducted to evaluate the thermal performance of shading devices, window-to-wall ratio, and facade materials in an apartment building. The optimal variable to reduce the cooling load was selected and applied to the building, and its thermal behavior to improve the thermal performance of future buildings in hot and humid climates was studied as the optimal building. The simulation was performed using Design Builder software with Energy Plus simulator engine and Climate Consultant software version 55 and Ashrae thermal comfort model. The findings indicate that the most efficient facade configuration comprises of vertical blinds, lattice windows, and a white cement facade, which resulted in a cooling load reduction of up to 38% and a total load reduction of up to 33% for the building.
Conclusion: The simulation results reveal that the optimal building configuration outperformed both the basic research model and local models on selected days throughout the year, in terms of load testing. This highlights the importance of implementing local solutions in the architecture of hot and humid climates.

کلیدواژه‌ها [English]

  • Energy Reduction
  • Indigenous Architecture
  • Shading Devices
  • Window-to-Wall Ratio
  • Facade Materials

این مقاله برگرفته از رساله دکتری نویسنده نخست با عنوان «تبیین اصول راهبردی طراحی جهت کاهش تضاضای بار سرمایشی مبتنی بر مورفولوژی نماهای معماری مسکونی بومی در اقلیم گرم و مرطوب (نمونه مورد مطالعه: شهر بوشهر)» می‌باشد که به راهنمایی نویسنده دوم و مشاوره نویسنده سوم در دانشگاه آزاد اسلامی واحد ساری انجام گرفته است.

This article is derived from the first author`s doctoral thesis entitled “Explain The Strategic Principles Of Design To Reduce The Demand For Cooling Load Based On The Morphology Of Native Residential Architecture In Hot And Humid Climates (Case Study: Bushehr)”, supervised by the second author and advised by the third, at Islamic Azad University Sari branch.

  1. Albert Al Touma, Djamel Ouahrani,. (2018). The selection of brise soleil shading optical properties for energy conservation and glare removal: A case study in Qatar, Journal of  Building Engineering.20:510-519.
  2. Aldossary, N.A., Rezgui, Y., & Kwan, A.(2014). Domestic energy consumption patterns in a hot and humid climate: a multiple-case study analysis. Applied Energy, 114,353-365. http://www.commercialwindows.org/wwr.php.
  3. Al-Obaidi, K.M., Ismail, M., Rahman, A.M.A., (2014). A study of the impact of environmental loads that penetrate a passive skylight roofing system in Malaysian buildings.Front. Arch. Res.2:178–191.
  4. Abediniangerabi, S.M. Shahandashti, A. Makhmalbaf,. (2020). A data-driven framework for energy-conscious design of building facade systems. Journal of Building Engineering. (19)31557-8. https://doi.org/10.1016/j.jobe.2020.101172.
  5. Barozzi, M., Lienhard, J., Zanelli, A., Monticelli, C., (2016). The sustainability of adaptive envelopes: developments of kinetic architecture. Procedia Eng. 155, 275–284. https://doi.org/10.1016/J.PROENG.2016.08.029.
  6. Bellia L, De Falco F, Minichiello F,.(2013) Effects of solar shading devices on energy requirements of standalone office buildings for Italian climates. Appl Therm Eng;54:190–201.
  7. Calkins, M., (2008), Materials for sustainable sites: a complete guide to the evaluation selection and use of sustainable construction materials, John wiley & sons.
  8. Chan, ALS. (2015). ‘Investigation on the appropriate floor level of residential building for installing balcony, from a view point of energy and environmental performance. A case study in subtropical Hong Kong’, Energy, 85:34-620.
  9. Dac-Khuong Buia , Tuan Ngoc Nguyena,⁎ , Abdallah Ghazlana , Ngoc-Tri Ngob , Tuan Duc Ngo,.(2020). Enhancing building energy efficiency by adaptive façade: A computational optimization approach. Applied Energy,265:114797.
  10. Djamel Ouahrani , Albert Al Touma,. (2017). Selection of Slat Separation-to-Width Ratio of Brise-soleil Shading Considering Energy Savings, CO2 Emissions and Visual Comfort – A Case Study in Qatar, Energy & Buildings, 17:32321-32326, doi: 10.1016/j.enbuild.2017.12.053.
  11. Stéphan, R. Cantin, A. Caucheteux, S. Tasca-Guernouti, P. Michel,(2014). Experimental assessment of thermal inertia in insulated and non-insulatedold limestone buildings, Build. Environ.80: 241–248
  12. Edward Halawaa, Amirhosein Ghaffarianhoseini,Ali Ghaffarianhoseinid, Jeremy Trombleya, Norhaslina Hassanc, Mirza Baiga, Safiah Yusmah Yusoffc, Muhammad Azzam Ismaile, .(2017). A review on energy conscious designs of building façades in hot and humid. Renewable and Sustainable Energy Reviews. 11-12.
  13. Galiano A, Nocera F, Patania F, Moschella A, Detommaso M, Evola G.(2016). Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings. Int. J. Sustainable Energy.35:411-428.
  14. Gao Y, Dong J, Isabella O, Santbergen R, Tan H, Zeman M, et al.(2018). A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting. Appl Energy;228:1454–1472.
  15. Ghiyaee, M. M., Mahdavi Niya, M., Tahbaz, M., & Mofidi shemirani, M. (2013). A Methodology for Selecting Applied Energy Simulation Tools in the Field of Architecture. Hoviatshahr7(13), 45-55.
  16. Global Alliance for Buildings and Construction, International Energy Agency, the United Nations Environment Programme,. (2019). Global Status Report: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector. https://globalabc.org/resources/document/119#document (accessed February 6, 2020).
  17. Hachem C, Athienitis A, Fazio P.(2014). Energy performance enhancement in multistory residential buildings. Appl Energy;116:9–19.
  18. Haitham Sghiouri, Ahmed Mezrhab, Mustapha Karkri, Hassane Naji,.(2018). Shading devices optimization to enhance thermal comfort and energy performance of a residential building in Morocco. Journal of Building Engineering, 17:30660-30665, DOI: https://doi.org/10.1016/j.jobe.2018.03.018.
  19. Ihara T, Gustavsen A, Jelle BP.,(2015). Effect of facade components on energy efficiency in office buildings. Appl Energy;158:422–32.
  20. Ji Hun Park , Beom Yeol Yun , Seong Jin Chang , Seunghwan Wi , Jisoo Jeon , Sumin Kim,. (2020).  Impact of a passive retrofit shading system on educational building to improve thermal comfort and energy consumption, Energy & Buildings. (20) 30759-30763 doi: https://doi.org/10.1016/j.enbuild.2020.109930.
  21. Jiang, Fujian, Li, Zhengrong, Zhao, Qun, Tao, Qiuhua, Shunyao, Lu,.(2017). Accuracy analysis and improvement of the Blind Enclosure Model to calculate the longwave radiative heat transfer for a façade with louver blinds. Energy Build. 140 (1): 98–109
  22. Jonathan Hey, Ding Ding, Tan Jun Liang,.(2019). An investigation of the heat absorption and transmission into a scaled building structure installed with a fluidic window. Energy & Buildings, (19)32329-32331, doi: https://doi.org/10.1016/j.enbuild.2019.109652.
  23. Fabbri, J. Gaspari, S. Bartoletti, E. Antonini, (2020). Effect of facade reflectance on outdoor 474 microclimate: An Italian case study, Sustainable Cities and Society, 54.
  24. Kirimtat, A., Koyunbaba, B.K., Chatzikonstantinou, I., Sariyildiz, S., (2016). Review of simulation modeling for shading devices in buildings. Renew. Sustain. Energy Rev. 53:23–49
  25. Aditya, T. Mahlia, B. Rismanchi, H. Ng, M. Hasan, H. Metselaar, O. Muraza, H. Aditiya,.(2017). A review on insulation materials for energy conservation in buildings, Renewable and Sustainable Energy Reviews 73: 1352 – 1365. doi:https://doi.org/10.1016/j.rser.2017.02.034.
  26. Belussi, B. Barozzi, A. Bellazzi, L. Danza, A. Devitofrancesco, C. Fanciulli, M. Ghellere, G. Guazzi, I. Meroni, F. Salamone, F. Scamoni, C. Scrosati,.(2019). A review of performance of zero 25 energy buildings and energy efficiency solutions, J. Build. Eng 25 : 13-142. doi:10.1016/j.jobe.2019.100772.
  27. Valladares-Rendon, G. Schmid, S.-L. Lo,.(2017). Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of facade shading systems, Energy and Buildings 140: 458 – 479. doi:https://doi.org/10.1016/j.enbuild.2016.12.073.
  28. Li, L., Qu, M., Peng, S.,(2016). Performance evaluation of building integrated solar thermal shading system: building energy consumption and daylight provision. Energy Build. 113: 189–201. http://dx.doi.org/10.1016/j.enbuild.12.040
  29. Lima, K.M.D., Bittencourt, L.S., Caram, R.M., (2013). Ranking configurations of shading devices by its thermal and luminous performance. Sustainable Architecture for a Renewable Future, 29th
  30. Loonen R. (2018). Approaches for computational performance optimization of innovative adaptive façade concepts. In: Department of the Built Environment. Netherlands: Eindhoven University of Technology
  31. Lyons, A., (2007). Materials for architects and builders: Recyclad and ecological materials, Third. edition, Elsevier. 330-337.
  32. Casini,.(2018). Active dynamic windows for buildings: A review, Renew. Energy. 119: 23-934. doi:10.1016/j.renene.2017.12.049.
  33. M.I. Puy, M.V. Arbizu, J.A.S. Fern.ndez, C.M. GMmez,. (2017). Opaque Ventilated Façades: thermal and energy performance review, Renew. Sustain. Energy Rev. 79: 180–191. http://dx.doi.org/10.1016/j.rser.2017.05.059.
  34. M.T. Kahsay, G. Bitsuamlak, F. Tariku,. (2020). Effect of localized exterior convective heat transfer on high-rise building energy consumption, Build. Simul. 13: 127–139, https://doi.org/10.1007/s12273-019-0568-7.
  35. Meseret T. Kahsay, Girma T. Bitsuamlak, Fitsum Tariku,.(2020). Effect of window configurations on its convective heat transfer rate. Building and Environment, 182:107139. https://doi.org/10.1016/j.buildenv.2020.107139
  36. Mingzhe Liu , Per Kvols Heiselberg, Yovko Ivanov Antonov, Frederik Søndergaard Mikkelsen .(2018). Parametric analysis on the heat transfer, daylight and thermal comfort for a sustainable roof window with triple glazing and external shutter. Energy & Buildings, 18:31095-31099, https://doi.org/10.1016/j.enbuild.2018.11.001.
  37. Mirrahimi S, Mohamed MF, Haw LC, Ibrahim NLN, Yusoff WFM, Aflaki A,.(2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renew Sustain Energy Rev;53:1508–19.
  38. Foldbjerg , T. Asmussen ,.(2013). Using ventilative cooling and solar shading to achieve good thermal environment in a Danish active house, REHVA J. 36–42 .
  39. Pacheco R, Ordóñez J, Martínez G.(2012) Energy efficient design of building: a review.Renew Sustain Energy Rev;16(6):3559–73.
  40. Rodrigues E, Fernandes MS, Gaspar AR, Gomes Á, Costa JJ.(2019). Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass. Appl Energy.252:113437-113439.
  41. Ruben Baetens, Bjørn Petter Jelle, Arild Gustavsen,.(2010).Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review, Solar Energy Materials & Solar Cells.
  42. Gou, V.M. Nik, J.L. Scartezzini, Q. Zhao, Z. Li,.(2018). Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand, Energy Build. 169 : 484–506. doi:10.1016/j.enbuild.2017.09.095.
  43. Liu, C.H. Huang, Y.M. Liu, J.Z. Shen, Z. Li,. (2018). Retrofitting traditional western Hunan dwellings with passive strategies based on indoor thermal environment, J. Archit. Eng. 24. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000316.
  44. Naylor, M Meroni, F. Salamone,. Gillott, T. Lau,.(2018). A review of occupant-centric building control strategies to reduce building energy use, Renew. Sustain. Energy Rev. 96 : 1–10. doi:10.1016/j.rser.2018.07.019.
  45. Shameri MA, Alghoul MA, Sopian K, Zain MFM, Elayeb O,.(2011). Perspectives of double skin façade systems in buildings and energy saving. Renew Sustain Energy Rev.15:1468–1475.  
  46. Sheng Liu, Yu Ting Kwok, Kevin Ka-Lun Lau, Pak Wai Chan, Edward N,. (2019). Investigating the energy saving potential of applying shading panels on opaque façades: A case study for residential buildings in Hong Kong. Energy & Buildings. 193(78-91).
  47. Oke, G. Johnson, D. Steyn, I. S. Liu, C.H. Huang, Y.M. Liu, J.Z. Shen, Z. Li, (2018).Retrofitting traditional western Hu- nan dwellings with passive strategies based on indoor thermal environment, J. Archit. Eng. 24 https://doi.org/10.1061/(ASCE)AE.1943-5568.0000316 .
  48. Susca, Green roofs to reduce building energy use?.(2019). A review on key structural factors of green roofs and their effects on urban climate, Build. Environ. 162:106273. doi:10.1016/j.buildenv.2019.106273.
  49. Yang, Q., Liu, M., Shu, C., Mmereki, D., Hossain, U., & Zhan, X,.(2015). Impact Analysis of Window-Wall Ratio on Heating and Cooling Energy Cnsumption of Residental Building in Hot Summer and Cool Winter zone in china. Journal of engineering, 18(1): 1-17. http://www.hindawi.com/journal s/je/2015/538254/.
  50. Yao, J., Chow, D.H.C., Zheng, R.Y., Yan, C.W., (2016). Occupants’ impact on indoor thermal comfort: a co-simulation study on stochastic control of solar shades. J. Build.Perform. Simul. 9 (3):272–287