نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای معماری، گروه معماری، دانشکده فنی و مهندسی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.

2 استاد، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

انتشار بیش از حد گاز دی‌اکسیدکربن اثرات سوئی را بـر محیط‌زیست گذاشته است حدود 40 درصد از مصرف انرژی و 30 درصد انتشار دی‌اکسیدکربن توسط ساختمان‌ها صورت می‌گیرد. این در حالی است که تاثیر بسزای پوسته ساختمان را در تبادل حرارتی و مصرف انرژی و در پی آن انتشار گاز دی‌اکسیدکربن نمی‌توان نادیده انگاشت، این مقاله به بررسی راهکارهای طراحی پوسته ساختمان‌های صفر انرژی با رویکرد کاهش مصرف انرژی، انتشار دی‌اکسیدکربن و استفاده از انرژی‌های تجدیدپذیر به تفکیک در دو دهه اخیر پرداخته است. سپس 34 نمونه ساختمان اداری در مناطق معتدل اروپایی بررسی و پرکاربردترین راهکارهای طراحی پوسته‌های آن شناسایی شده است.  نهایتاً پرکاربردترین راهکارهای شناسایی شده جهت امکان‌سنجی قابلیت اجرا برای ساختمان‌های اداری در اقلیم مشابه در ایران بر اساس پارامترهایی چون هزینه، سهولت اجرا در زمان ساخت و سهولت نگهداری پس از ساخت بنا، نیاز به نیروی کار ماهر و تجهیزات تخصصی، زمان اجرا، میزان تولید انرژی و بازگشت سرمایه با استفاده از آنتروپی شانون وزن‌دهی و برحسب وزن ترکیبی حاصل از کاربرد و قابلیت اجرا رتبه‌بندی شده است. روش تحقیق استفاده شده از نوع توصیفی تحلیلی بوده و از ابزارهایی چون بهره‌گیری از نتایج تحقیقات پیشین، بررسی نمونه‌های موردی و مقایسه تطبیقی نیز استفاده شده است. نتایج حاصل از پژوهش نشان می‌دهند پرکاربردترین راهکارها به ترتیب مربوط به استفاده از صفحات فتوولتائیک، عایق‌کاری حرارتی جداره‌ها، استفاده از تهویه طبیعی، توجه به ابعاد و موقعیت پنجره‌ها، استفاده از نور روز، استفاده از مصالح با ظرفیت حرارتی مناسب، استفاده از گلخانه و آتریوم و استفاده از دیوار و بام سبز می‌باشد. استفاده توامان این راهکارها در طراحی پوسته‌ها می‌تواند بیشترین بهره‌وری را به جهت کاهش مصرف انرژی و کاهش انتشار دی‌اکسیدکربن در کوتاه مدت داشته باشد.

چکیده تصویری

امکان‌سنجی استفاده از راهکارهای بهینه‌سازی پوسته ساختمان‌های اداری در مناطق معتدل ایران با بهره‌گیری از نمونه‌‌ بناهای صفر انرژی اجرا شده در اقلیم‌های مشابه

تازه های تحقیق

- شناسایی راهکارهای بهینه‌سازی پوسته ساختمان‌های اداری در مناطق معتدل با بهره‌گیری از نمونه‌‌ بناهای صفرانرژی اجرا شده.
- تحلیل قابلیت اجرا و اولویت‌بندی راهکارها بر اساس پارامترهای هزینه، سهولت اجرا، نیاز به نیروی کار ماهر و تجهیزات تخصصی، زمان اجرا، میزان تولید انرژی و بازگشت سرمایه با استفاده از آنتروپی‌شانون .
- شناسایی پرکاربردترین راهکارها با اولویت استفاده از صفحات فتوولتائیک، عایقکاری حرارتی، تهویه طبیعی، ابعاد و موقعیت پنجره‌ها، نور طبیعی، مصالح با ظرفیت حرارتی مناسب، آتریوم، دیوار و بام سبز.

کلیدواژه‌ها

عنوان مقاله [English]

Assessing the Feasibility of Using Office Building Envelope Optimization Solutions in Temperate Regions of Iran; A Case Study of Zero Energy Buildings in Similar Climates

نویسندگان [English]

  • Fatemeh Yarmohammad 1
  • Fatemeh Mehdizadeh Saradj 2

1 Ph.D. Candidate in Architecture, Department of Architecture, Faculty of Engineering, Tehran North Branch, Islamic Azad University, Tehran, Iran.

2 Professor, School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

Extended Abstract
Background and Objectives: Air pollution and excessive energy consumption are two crises that seriously threaten metropolises today and endanger the health of society and energy sources in the future. Nearly half of the world’s non-renewable energy resources have been consumed. An energy shortage is inevitable because more than 40% of energy consumption is in the construction sector. The average energy consumption of buildings in Iran is more than 2.5 times the world average, and big cities suffer from air pollution, which is often caused by fossil fuels. More than 98% of the energy in Iran is consumed as oil and gas products, which account for 26.4% of carbon dioxide emissions. The buildings are designed and built in such a way that they do not retain the cold and heat that is provided with exorbitant costs. The heat exchange occurs quickly due to the un-insulated outer envelope (walls, roof, and floor) and un-insulated cooling and heating facilities, which leads to an increase in energy consumption by heating and cooling systems. The energy consumption research in the recent decade comprises sustainable, zero-energy, and zero-carbon buildings. The annual energy consumption of these buildings is nearly zero, and they do not produce carbon pollutants. Considering the non-use of carbon dioxide-producing energies and renewable energy supply, zero-carbon buildings can effectively reduce air pollution in big cities. This research aims to identify and explain the design principles of European zero-energy office building envelopes to reduce energy consumption and carbon emissions. Then it will evaluate the feasibility of using the solutions above in cities with similar climates in Iran.
Methods: At first, the principles and solutions of reducing energy consumption, reducing carbon dioxide emissions, and using renewable energies that directly or indirectly affect the design of the building envelope have been identified and specified. Then, to reduce energy consumption, carbon dioxide emission, and the use of renewable energy, 34 examples of office buildings in temperate European regions have been examined, and the most applied methods for designing their envelopes have been identified. Then, the most widely used solutions identified for the feasibility of implementation for office buildings in areas with similar climates in Iran have been weighted by the Shannon entropy method and ranked according to the combined weight of application, feasibility, or based on some parameters such as cost, ease of implementation during construction and after construction, the need for skilled labor and specialized equipment, execution time, the produced energy and payback period of the investment. 
Findings: The results of the research show that the most employed solutions are related to the use of photovoltaic panels, thermal insulation of the walls, the use of natural ventilation, attention to the dimensions and position of the windows, the use of daylight, the use of materials with suitable thermal capacity, the use of greenhouse and atrium, and the use of green wall and roof.
Conclusion: The results of this article indicate the most effective principles and common solutions for the envelope design of zero-energy buildings in Iran with climates similar to the European climate. The combined use of these solutions in the design of envelopes can greatly reduce energy consumption and carbon dioxide emissions in the short term. Due to the novel nature of the construction and operation of zero energy buildings in Iran and the lack of experience in obtaining the productivity and energy efficiency of these buildings using various solutions so far, using the experiences of advanced countries and the feasibility of implementing those solutions is indispensable to achieve an optimal and appropriate design and the highest energy efficiency of the buildings in Iran shortly. Therefore, the results of this research can effectively help designers in this field.

کلیدواژه‌ها [English]

  • Buildings Envelope
  • Energy Consumption
  • Carbon Dioxide Emission
  • Renewable Energy
  • Time and Cost

این مقاله برگرفته از رساله دکتری نویسنده نخست با عنوان «طراحی نمای ساختمان‌های اداری با استفاده از سیستم‌های خورشیدی در جهت کاهش آلاینده‌ها» می‌باشد که به راهنمایی نویسنده دوم در دانشگاه آزاد اسلامی واحد تهران شمال انجام گرفته است.

This article is derived from the first author`s doctoral thesis entitled “Feasibility study of using building envelope optimization solutions in temperate regions of Iran by using the example of zero energy buildings implemented in similar climates”, supervised by the second authors, at Islamic Azad University Tehran North branch.

  1. Abedi, Afshin; Ahmadi Nadushan, Afshin; Talebi, Mansour. (2014). The role of different government departments, specialists and the general public in reducing the energy consumption of buildings, Danesh Nama Monthly, 23rd year, 3rd period . [In Persian]
  2. Aelenei, D. Aelenei, L. Musall3, E. Cubi, E. Ayoub, J. Belleri, A. (2013). Design Strategies for Non-Residential Zero-Energy Buildings Lessons Learned from Task40/Annex 52 Towards Net Zero-Energy Solar Buildings. CONFERENCE PAPER.
  3. Aelenei, L. Lollini, R. Gonçalves, H. Aelenei, D. Noguchi, M. Donn5, M. Garde, F.(2011). Passive Cooling Approaches In Net-Zero Energy Solar Buildings: Lessons Learned From Demonstration Buildings. Conference paper.
  4. Aelenei, Laura. Aelenei, Daniel. Gonçalves, Helder. Lollini, Roberto. Musall, Eike. Scognamiglio, Alessandra. Cubi, Eduard. Noguchi, Massa. (2012). DESIGN ISSUES FOR NET ZERO-ENERGY BUILDINGS.
  5. Aelenei, Laura. Gonçalves, Helder. (2014).From solar building design to Net Zero Energy Buildings: performance insights of an office building. Volume 48, Pages 1236-1243.
  6. Akrami, Gholamreza. Alipour, Leila (2016). The role of local materials in sustainable architecture from an environmental point of view. Village housing and environment magazine. No. 156, 29-48. [In Persian]
  7. Alizadeh, Alireza (2012). Lighting and the necessity of its appropriateness with regard to the principle of efficiency and optimization, Isfahan University of Medical Sciences news site. [In Persian]
  8. Amani, Saeed; Bagheri, Mohammad; Tavakoli, Ahmadreza; Ziyari, Mohammad Taghi; Miri, Motalleb (2010). Management of energy consumption in buildings, Energy Efficiency Organization of Iran (SABA). [In Persian]
  9. Ching, Frank. (2012). A Visual Dictionary of Architecture. 2nd ed. Hoboken, N.J.: Wiley.
  10. CLG, Building a greener future: policy statement. The Stationery Office, London, 2007.
  11. De Luca, Francesco. Kurnitski, Jarek. Dogan, Timur. (2018, June). Methodology for Determining Fenestration Ranges for Daylight and Energy Efficiency in Estonia, Conference Paper.
  12. De Luca, Francesco. Thalfeldt, Martin. (2018). Comparison of Static and Dynamic Shading Systems for Office Building Energy Consumption and Cooling Load Assessment. Management of Environmental Quality, Emerald, Volume 29 Issue 5.
  13. DOE to Pursue Zero-net Energy Commercial Buildings. Am. Ceram. Soc. Bull., 87(10) (2008) 21-21.
  14. EPBD Recast, DIRECTIVE 2010/31/EU of The European Parliament and of The Council of 19 May 2010 on the energy performance of buildings (Recast), in 18/06/2010, O. J. E. U. (2010) L 153/13-L153/35.
  15. Gardea*, A. Lenoira, A. Scognamigliob, D. Aeleneic, D. Waldrend, H. N.Rostvike, J. Ayoubf, L. Aeleneig, M. Donnh, M. Tardiff, S. Coryh. (2014). Design of Net Zero Energy Buildings: Feedback from international projects. Energy Procedia 61, 995 – 998.
  16. Fakhari, Maryam; Heydari, Shahin (2013). Optimizing the solar chimney and investigating its effect on building ventilation, Journal of Fine Arts-Architecture and Urban Development, Volume 18, Number 2. [In Persian]
  17. Favoino, Fabio. Overend, Mauro. Jin, Qian. (2015). The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies, Applied Energy Volume 156, 15, Pages 1-15.
  18. Fayaz, Rima; Muntaser Kohsari, Aida. (2013). Analysis of greenhouse use to save energy consumption in residential buildings, the third international conference on new approaches in energy conservation. [In Persian]
  19. Fenga, Guohui. Chia, Dandan. Xua, Xiaolong. Doua, Baoyue. Suna, Yixin and Fua, Yao. (2017). Study on the Influence of Window-wall Ratio on the Energy Consumption of Nearly Zero Energy Buildings. Procedia Engineering 205,730–737.
  20. Garde, François. Donn, Michael. (2014). Solution sets and Net Zero Energy Buildings: A review of 30 Net ZEBs case studies worldwide. A report of Subtask C, IEA Task 40/Annex 52 Towards Net Zero Energy Solar Buildings.
  21. Ghiabaklou, Zohre. (2010). Fundamentals of building Physics, Regulating environmental conditions, Amir Kabir University of technology in Iran (Tehran Polytechnic). [In Persian]
  22. Gracia, Alvaro de. (2019). Dynamic building envelope with PCM for cooling purposes – Proof of concept. Applied Energy 235, 1245–1253.
  23. Poirazis, Å. Blomsterberg, M. Wall. (2008). Energy simulations for glazed office buildings in Sweden, Energy and Buildings 40 (7), 1161–1170.
  24. Hadianpour, Mohammad; Zarkesh, Afsane; Mahdavinejad, Mohammad Javad (2014). How to use two-layer facades to the optimal use of energy in buildings, Danesh Nama monthly, twenty-third year, number 227-229. [In Persian]
  25. Heydari, Shahin; Mohammadkari, Behrouz; Askari Anarki, Ahmed (2015). Combining thermal solar collector with building facade, Naqsh Jahan magazine, Tarbiat Modares University Publications, Volume 5, number 2. [In Persian]
  26. International Energy Agency (IEA). (2010). Energy Technology Perspectives 2010: Scenarios & Strategies to 2050; International Energy Agency: Paris, France.
  27. JASE-W Japanese Smart Energy Products & Technologies, www.jase-w.eccj.
  28. Loukaidoua, A. Michopoulos, Th. Zachariadis. (2017). Nearly-Zero Energy Buildings: Cost-Optimal Analysis of Building Envelope Characteristics, Procedia Environmental Sciences 38, 20 – 27.
  29. Khoshnoud Zargar, Saba; Fili, Lida; Ziran, Hamid (2016). Investigating the design methods of residential units based on zero-carbon architecture, the third international research conference in science and technology. [In Persian]
  30. Mabna (2013). Introducing the design method of Iran's first zero energy building. [In Persian]
  31. Mayhoub, Mohammad (2013). Dual HVAC and Light Duct System: An innovative approach increasing the daylight utilization in buildings, Conference: Future Build 2013.
  32. Ministry of Energy, energy balance sheet for 2015. [In Persian]
  33. Mohammad, Shaghaig (2013). Studying the thermal behavior of common materials in wall construction, case study: residential buildings in Tehran. Journal of Fine Arts, Architecture and Urban Planning, Volume 18, Number 1, 69-78. [In Persian]
  34. Moosavi, Leila. Mahyuddin, Norhayati. AbGhafar, Norafida. Azzam Ismail, Muhammad. (2014). Thermal performance of atria: An overview of natural ventilation effective designs" Renewable and Sustainable Energy Reviews",  p 654–670.
  35. Motalaie, Sanaz (2014). Examining the role of front space at the entrance in order to reduce the energy consumption of the building through software simulation, National Conference on Architecture and Sustainable Urban Landscape. [In Persian]
  36. Nasrollahi, Farshad. (2011). Architectural and urban regulations that reduce the energy consumption of buildings, National Energy Commission of Iran. [In Persian]
  37. National building regulations, topic 19. [In Persian]
  38. Nearly Zero-Energy Building (nZEB). (2016). technology solutions, cost assessment and performance, ZEBRA2020: NEARLY ZERO-ENERGY BUILDING STRATEGY 2020, produced in the context of the ZEBRA2020 IEE/13/675/S12.675834 Project.
  39. Osmani, Mohamed, O'Reilly, Alistair (2009). Feasibility of zero carbon homes in England by 2016: a house builder's perspective. Build. Environ. 44 (2009) 1917 1924.
  40. Packmangroup. (2015). Retrieved from: http://www.packmangroup.com/news_item/260, at June 25, 2015.
  41. Paoletti, Giulia. Pascuas, Ramón Pascual. Pernetti, Roberta. Lollini, Roberto. (2017). Nearly Zero Energy Buildings: An Overview of the Main Construction Features across Europe, Buildings (Journal from MDPI), volume 3.
  42. Perlova, Elena. , Platonova, Mariia. , Gorshkov, Alexandr. , Rakova, Xenyiya*. (2015). Concept Project of Zero Energy Building, Procedia Engineering 100, 1505 – 1514.
  43. Pikas, M. Thalfeldt, J. Kurnitski,J. (2014). Cost optimal and nearly zero energy building solutions for office buildings. Energy and Buildings 74, 30–42.
  44. Razavian, Mohammad Taghi; Ghafouripour, Amin; Razavian, Mahan (2010). Green roofs, environment preparation, volume 3, number 1. [In Persian]
  45. Rezamanesh, Munire; Nazari Azar, Mohammad (2014). Renewable energy and its application in building (photovoltaic system), Daneshnama No. 227-229. [In Persian]
  46. S.C.M. Hui (2010). Zero energy and zero carbon buildings: myths and facts. In Proceedings of the International Conference on Intelligent Systems, Structures and Facilities: Intelligent Infrastructure and Buildings, Hong Kong, 2010.
  47. Sabori, Saber; Rajabian, Elham; Fahimi Escoi, Zahra (2014). Examining the performance of two-shell facades in order to provide thermal comfort and energy storage in buildings, Iranian National Electronic Conference on Environment and Energy. [In Persian]
  48. Sadeghi, Hossein; Kalantar, Valley (2016). Improving the wind catcher performance using an underground channel, Modarres Mechanical Engineering Magazine, No. 13, Volume 16. [In Persian]
  49. Salehi, Majid (2011). Presenting an architectural model and proposing climate-compatible envelopes with the approach of providing thermal comfort in hot and dry climates, Master's Thesis, Ilam University. [In Persian]
  50.  Sánchez, Alberto. Salom, Jaume. Cubí, Eduard. (2012). TOWARDS NET ZERO ENERGY OFFICE BUILDINGS IN SPAIN: A REVIEW OF 12 CASE STUDIES. Conference paper.
  51. Scognamiglio, Alessandra. Musall, Eike, Røstvik, Harald N. (2012). Photovoltaics And (Nearly) Net Zero Energy Buildings: Architectural Considerations. Conference Paper.
  52. Sharifian Ghazi Jahani, Helen (2015). Studying the effect of thermal mass of common materials in the construction of building external walls in energy consumption reduction: a case study of Tabriz buildings, the international conference on construction architecture and urban planning at the beginning of the third millennium. [In Persian]
  53. Sharqi, Ali; Mohtashami, Mohammad Hossein. (2007). Green spaces in tall buildings with a new approach to nature, Environmental Science and Technology Quarterly, Article 5, Volume 9, Number 4. [In Persian]
  54. Shiravi Khozani, Taheri Asl, Sadeghi. (2013). Change in the lighting system design pattern and optimal use of natural light in the building, the second national climate, building and energy consumption optimization conference. [In Persian]
  55. Sudaporn, Chungloo, Bundit, Limmeechokchai. (2009). Utilization of cool ceiling with roof solar chimney in Thailand: The experimental and numerical analysis, Renewable Energy, 34, pp 623_633.
  56. The principles of optimal use of natural and artificial lighting, taken from Appendix 15 of the 19th topic guide (Energy saving). [In Persian]
  57. Troi, Alexandra. Tribus, Michael. Costa, Andrea. Haberer, Walter. Parisi, Davide. Sparber, Wolfram. (2008, October). Towards Zero Energy Renovation: Ex-Post Building in Bolzano/Italy. International Conference on Passive and Low Energy Architecture, Dublin, 22nd - 24th.
  58. Turkjezi, Milad (2014). New technologies to optimize energy consumption. [In Persian]
  59. Turkjezi, Milad; Taqavi, Hamidreza (2013). New technologies to optimize energy consumption, the second national conference on climate, building and energy consumption optimization. [In Persian]
  60. UK Building Regulations and EU Directives. (2014). Zero carbon homes and nearly zero energy buildings, Zero Carbon Hub, London.
  61. Vernos, Achaemenid (2015). Ground Cover Plants and its impact on air pollution, international conference on new researches in agricultural and environmental sciences. [In Persian]
  62. Wali Allahi, Jalal; Mati Birjandi, Ali Akbar (2010). A look at clean energy and environmentally friendly structures in the design of cities, the fourth Iranian fuel cell conference. [In Persian]
  63. Wang, L.P. Gwilliam, J. Jones, P. (2009). Case study of zero energy house design in UK. Energy Buildings 41(11) 1215-1222.
  64. Wulfinghoff, Donald R. (1999). Energy Efficiency Manual, Wheaton, Maryland USA, Energy Institute Press.
  65. Yildiz, Yusuf. Durmas, Arsan, (2011). Identification of the building parameters that influence cooling and heating energy loads for apartment building in hot-humid climates. Energy 36, 4287-4296.
  66. Zarghami, Ismaeil; Adibi, Elahe (2016). Evaluation of thermal performance of the green roof in sustainability and optimization of energy consumption of residential buildings in the hot and dry climate of Iran, Journal of Architecture and Sustainable Urban Development, 4th year, 1st issue. [In Persian]
  67. Zeller, Achim. Thiemann, Ansgar. Reeth, Bart Van. (2010). Net Zero Energy Office Building Germany, Ruhr region.
  68. Zhang,Tiantian.Yang,Hongxing. (2018, October). Optimal thickness determination of insulating air layers in building envelopes. Energy Procedia, Volume 152, Pages 444-449.
  69. Zulfiqari, Alireza; Saadati Nesab, Mehran; Moslehi, Hamed; Nowrozi Jajarm, Elahe (2014). Analysis of the effects of using double-layered facade as a solution for energy conservation in Iranian residential buildings using Design Builder software, the third international conference on new approaches in energy conservation. [In Persian]