نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری معماری، گروه معماری، پردیس بین‌الملل کیش، دانشگاه تهران، کیش، ایران.

2 استاد، پردیس هنرهای زیبا، دانشگاه تهران، تهران، ایران.

3 استاد، دانشکده روانشناسی و علوم تربیتی، دانشگاه شیراز، شیراز، ایران.

چکیده

یکی از جنبه­‌های متنوع آسایش در محیط­‌های مصنوع، آسایش حرارتی است که تحت تاثیر مولفه­‌های مختلفی می‌­تواند تغییر یابد. محققان بر این مسئله تاکید می­‌ورزند که مطالعات اولیه آسایش حرارتی با تکیه بر مولفه­های اقلیمی تنها بخشی از نتایج را توجیه می­‌نماید؛ از این‌رو لازم است اثر سایر مولفه­‌های نیز بررسی گردد. این پژوهش با هدف روشن نمودن مولفه‌­های فردی و اجتماعی، علاوه ­بر محیطی، اثرگذار بر ادراک آسایش حرارتی صورت پذیرفته ­است تا بدین ترتیب راهکارهایی در جهت بهبود وضعیت طراحی و بهسازی فضاهای اداری ارائه نماید. بنابراین دو سوال مطرح است: یکی آن‌که مولفه‌­های اثرگذار بر ادراک آسایش حرارتی کدام‌­اند؟ و دیگری کدام یک از پاسخ‌های حرارتی قابلیت پیش­‌بینی بهتری توسط این نوع مولفه­‌ها را دارا می­‌باشند؟. در این راستا مطالعه‌­ای میدانی (شامل پرسشنامه، مشاهده و ثبت داده­‌های اقلیمی با استفاده از حس­گرهای حرارتی) در ساختمان مدیریت دانشگاه شیراز در چهار روز کاری در زمستان 1397 انجام شده است. مولفه­‌های فردی (شامل سن، جنسیت، فشار خون، ضربان قلب، دمای بدن، رنگ پوست، نرخ لباس، نرخ فعالیت و رفتارهای سازگاری خودآگاه) مولفه­‌های اجتماعی شامل (رشته تحصلیی، سمت، سطح تحصیلات، وضعیت مصاحبت و وضعیت مراجعین) در قالب پرسشنامه و مشاهده توسط محقق سنجیده شده­ است. دمای هوا و رطوبت نسبی داخل به عنوان مولفه محیطی، نیز توسط دیتالاگرها ثبت شده­اند. پاسخ­های حرارتی افراد نیز در قالب مقیاس­های احساس حرارتی، آسایش حرارتی، رضایت حرارتی، ترجیح حرارتی، پذیرش حرارتی و آسایش حرارتی کلی سنجش شده­‌اند. نتایج مطالعه بر روی 108 کاربر در ساختمان اداری نشان می‌­دهد تاثیر مولفه‌­های اجتماعی قابل اغماض است اما توجه بدان­‌ها در روند طراحی می‌­تواند به بهبود وضعیت کمک نماید. در خصوص مولفه­‌های فردی نیز شاخص توده بدن و نرخ لباس دو مولفه با بیشترین اثرگذاری می‌­­باشند. بنابراین وجود مولفه­‌های اجتماعی کمک چندانی بر پیش­‌بینی پاسخ‌­های حرارتی نمی‌­نماید. براساس مولفه‌­های محیطی و فردی نیز، ترجیح حرارتی ضریب تعیین بالاتری را نشان می‌­دهد. از آنجایی که ترجیح حرارتی زمینه‌­ساز تغییرات لحظه‌­ای و واکنش فرد در محیط می‌­شود، از اهمیت بسزایی برخوردار است و باید مورد توجه طراحان قرار گیرد.

تازه های تحقیق

- با وجود اعمال استانداردهای آسایش حرارتی، اظهار نارضایتی و سطح پایین کاراریی کاربران، نشان از تاثیر مولفه‌­هایی علاوه ­بر مولفه‌­های محیطی دارد.

- اثر مولفه­‌های اجتماعی بر ادارک حرارتی فرد در فضای اداری قابل اغماض است.

- ترجیح حرارتی فرد براساس مولفه­‌ای فردی و محیطی قابلیت پیش­‌بینی و تصمیم‌­گیری دارد. براین اساس میانگین دمای ترجیجی کاربران، در شرایط مورد مطالعه، برابر با 6/23 درجه سانتیگراد می‌­باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Identification and assessment of the effect of personal, environmental and social components on thermal comfort in an office building

نویسندگان [English]

  • Bahareh Bannazadeh 1
  • Shahin Heidari 2
  • Habib Hadinafard 3

1 Ph.D. in Architecture, Department of Architecture, Kish International Campus, University of Tehran, Kish, Iran

2 Professor, College of Fine Arts, University of Tehran, Tehran, Iran.

3 Professor, Department of Clinical Psychology, Shiraz University, Shiraz, Iran.

چکیده [English]

 
Extended Abstract
Background and Objectives: One of the various aspects of comfort in nowadays architectural design is thermal comfort which can be changed by various components. Researchers emphasize that early studies of thermal comfort relying on climate and environmental aspect can only justify part of the results. Therefore, it is necessary to examine the effect of other components. Effective components could be found in physical, physiological, psychological, social, environmental and economic aspects. So thermal comfort can be impressed by inner and outer factors. By an open research in data bases, it's obvious that there is a lack of studies in these subjects; because of variety of effective components on thermal comfort. By the way researchers believe that there are a lot of multi-relation between components that should be considered in thermal comfort studies. Therefore, this study, as a part of larger study, conducted to investigate the effect of personal, environmental and social components on thermal comfort. The purpose of this study was to clarify the individual and social components affecting the perception of thermal comfort in order to provide solutions to improve the design and improvement of office spaces. So, there are two questions: First, what are the personal and social factors affecting the perception of thermal comfort? And second, which of the thermal scales are better able to be predict based on these components?
Methods: In this regard, a field study (including questionnaire, observation and on-site measurement for recording of climatic data using thermal sensors) was conducted in winter in main administrative office building of Shiraz University. Questionnaire design to gather some of personal components (such as age, gender, height, weight and adaptive behaviors); social components (including education and degree level, field of study and position); and thermal scales (thermal sensation, thermal comfort, thermal satisfaction, thermal preference, thermal acceptability, and overall thermal comfort). During observation blood pressure, heart rate, body temperature as a personal component measured using related standard device.  Clothing and activity type recorded and then changed into a quantitative scale. The indoor air temperature and relative humidity are also recorded by the data loggers. The field study was conducted in January 2019 for four consecutive days from 8 am to 12 pm.  In total, there were 110 measurement subjects, and finally, by eliminating incomplete questionnaires, 108 were identified as useful in the analysis process.  Shiraz main administrative building located on the northern side of the city of Shiraz, Iran, (52.52°N, 29.63°E). The 138920 m2 building is oriented in the northwest and southeast direction in two blocks (with seven and ten stores). Two blocks of the building have some differences in construction details and interior design. There was no compulsion to participate and oral and short form written Consent was considered. o restrictions on participants to have freedom of their usual work day.
Findings: The collected data were imported into SPSS software,22 and statistical analysis including descriptive and inferential statistics (linear and multiple linear regression, Univariate ANOVA) were performed. In this study the correlation coefficients were selected based on the variables scale. So, Spearman, Pearson and Eta correlation have been used to show the strength of the relations. In this study, 108 subjects including 41 women and 66 men (one person did not mention gender) participated. The age group varies from 24 to 60 years. The majority of the age group is in the 31-45 years old range. These individuals weigh between 50 and 120 kg and have a height of 1.55 to 1.86 meters. The average body temperature was 36 °­C, the mean blood pressure was 126 with a minimum of 87 and a maximum of 183, and heart rate was also in the range of 49 to 98. The average indoor air temperature during the four days of study was 23.67 °­C, and the average relative humidity was 24.86%. The indoor globe temperature was very close to air temperature (23.50 °­C).  The average outdoor temperature was 15.2 °­C, and the average relative humidity was 34.9%.  Thermal response was considered with nine different thermal scale in  3,5 & 7 point Likert scale that the average of each response was as below: Thermal sensation vote (TSV)= -0.4; Thermal comfort=6; Thermal pleasure= 4.78; Temperature preferences= 0.3’ Humidity preferences= -0.18; Velocity preferences= -0.35; Radiation preferences=-0.32; Thermal acceptance= 0.85; & overall thermal comfort= 4.94.
Conclusion: The results show that the impact of social components is negligible. However, participants in double and multiple office room had better thermal comfort status in comparison to single office room. So, if these criteria considered during design process it can help to improve the indoor environmental quality. Regarding the personal components, body mass index and clothing value are two most influential factors. It’s very important to make different thermal adaptation strategies for occupant to have a right to choose any of them. Therefore, considering the type of components needed to provide comfortable conditions in both human resource management and architectural design appropriate strategies should be considered. In this study Thermal preferences is an appropriate scale for prediction of occupant’s thermal needs based on environmental and personal components. Thermal comfort Range was calculated based on Griffiths methods and it was 21-26 °­C. It’s very important to know that based on thermal sensation vote in most office buildings people feel neutral but they usually need some changes in temperature, humidity, air velocity and radiation. So as an architecture or mechanical engineering we can’t just depend on thermal sensation vote to make a decision for a heating or cooling setpoints. So, if the setpoint of the studied office building changes from 25°­C to 23.6°­C we can anticipate at list 10 percent reduction in an energy consumption.  People have the ability of adaption to a very different situation and this make them very flexible and resilient. But designer should be aware that this adaption process needs more effort and of course more mental, psychological and physical energy that can reduce occupant’s productivity.

کلیدواژه‌ها [English]

  • Thermal Comfort
  • Thermal Adaptation
  • Thermal sensation
  • Thermal Preferences
  • Adaptive Behavior
  • Office Building
حیدری, شاهین. (1393). سازگاری حرارتی در معماری؛ نخستین گام در صرفه‌­جویی مصرف انرژی (اول). تهران: دانشگاه تهران.
Ali-Toudert, F. (2005). Dependence of Outdoor Thermal Comfort on Street Design in Hot and Dry Climate. Berichte Des Meteorologischen Institutes Der Universität Freiburg, Nr. 15(15).
Aljawabra, F., & Nikolopoulou, M. (2010). Influence of hot arid climate on the use of outdoor urban spaces and thermal comfort: Do cultural and social backgrounds matter? Intelligent Buildings International, 2(3), 198–207.
Auliciems, A. (1981). Towards a psycho-physiological model of thermal perception. International Journal of Biometeorology, 25(2), 109–122.
Barthelmes, V. M., Andersen, R. K., Heo, Y., Knudsen, H., Fabi, V., & Corgnati, S. P. (2018). Introducing thermal comfort attitudes, psychological, social and contextual drivers in occupant behaviour modelling with Bayesian Networks. In WiNDSOR Conference, Rethinking Comfort (p. 972).
Brager, G. S., & De Dear, R. (1998). Thermal adaptation in the built environment : a literature review. Energy and Buildings, 27, 83–96.
Candido, C., & Dear, R. De. (2012). From thermal boredom to thermal pleasure: a brief literature review. Ambiente Construído, 12(1), 81–90.
Chappells, H., & Shove, E. (2007). sustainability , energy consumption and the indoor environment Debating the future of comfort : environmental sustainability , energy consumption and the indoor environment, (May 2015), 37–41.
Chen, L., & Ng, E. (2012). Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, 29(2), 118–125.
Cheung, P. K., & Jim, C. Y. (2017). determination and application of outdoor thermal benchmarks. Building and Environment.
Chung, M. S. C., & Lau, K. K. L. (2018). Effects of environmental perception on thermal sensation in sub-tropical and high-density cities: a case study of Hong Kong. In WiNDSOR Conference, Rethinking Comfort (p. 506).
Cohen, P., Potchter, O., & Matzarakis, A. (2013). Human thermal perception of Coastal Mediterranean outdoor urban environments. Applied Geography, 37, 1–10.
D’Oca, S., Chen, C. F., Hong, T., & Belafi, Z. (2017). Synthesizing building physics with social psychology: An interdisciplinary framework for context and occupant behavior in office buildings. Energy Research and Social Science, 34(April), 240–251.
Damiati, S. A., Zaki, S. A., Rijal, H. B., & Wonorahardjo, S. (2016). Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season. Building and Environment, 109, 208–223.
De Dear, R., Brager, G., & Cooper, D. (1998). Developing an adaptive model of thermal comfort and preference: final report [on] ASHRAE RP-884. ASHRAE Transactions (Vol. 104).
De Dear, R. J., Akimoto, T., Arens, E. A., Brager, G., Candido, C., Cheong, K. W. D., & Toftum, J. (2013). Progress in thermal comfort research over the last twenty years, 442–461.
De Dear, Richard J, & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549–561.
Földváry, V., Cheung, T., Zhang, H., de Dear, R., Parkinson, T., Arens, E., ... &, & Li, P. (2018). Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, (June).
Foo, J., & Mavrogianni, A. (2018). Seeing is Believing, or is it? An assessment of the influence of interior finish characteristics on thermal comfort perception at a University campus in a temperate climate. In WiNDSOR Conference, Rethinking Comfort.
Frontczak, M., & Wargocki, P. (2011). Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 46(4), 922–937.
Gunay, H. B., Brien, W. O., & Beausoleil-morrison, I. (2013). A critical review of observation studies , modeling , and simulation of adaptive occupant behaviors in offices. Building and Environment, 70, 31–47.
Halawa, E., & Van Hoof, J. (2012). The adaptive approach to thermal comfort: A critical overview. Energy and Buildings, 51, 101–110.
Hong, T., & Yan, D. (2018). IEA EBC Annex 66 : A recently-completed international collaborative project, 28(2).
Huizenga, C., Hui, Z., Duan, T., & Arens, E. (2005). An improved multinode model of human physiology and thermal comfort. Design, 9(2), 129–139.
Humphreys, M. A., Roaf, S., & Nicol, F. (2016). Adaptive Thermal Comfort: Foundations and Analysis.
Humphreys, M., & Nicol, F. (1998). Understanding the adaptive approach to thermal comfort. ASHRAE Transactions, 991–1004.
Humphreys, M., & Nicol, J. F. (2018). Puzzles and paradoxes in adaptive comfort Michael. In WiNDSOR Conference, Rethinking Comfort (pp. 3–19).
Jowkar, M., & Montazami, A. (2018). Thermal Comfort in the UK Higher Educational Buildings: The Influence of Thermal History on Students’ Thermal Comfort. In WiNDSOR Conference, Rethinking Comfort (p. 622).
Kenawy, I., & Elkadi, H. (2013). The impact of cultural and climatic background on thermal sensation votes. PLEA 2013: Sustainable Architecture for a Renewable Future, (September), 1–6.
Kim, Joyce, Zhou, Y., Schiavon, S., Raftery, P., & Brager, G. (2018). Personal comfort models : Predicting individuals ’ thermal preference using occupant heating and cooling behavior and machine learning. Building and Environment, 129(December 2017), 96–106.
Kim, Jungsoo, & de Dear, R. (2018). Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students. Building and Environment, 127(October 2017), 13–22.
Knez, I., & Thorsson, S. (2006). Influences of culture and environmental attitude on thermal , emotional and perceptual evaluations of a public square, 258–268.
Knez, I., & Thorsson, S. (2008). Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. Building and Environment, 43(9), 1483–1490.
Korsavi, S. (2018). Developing a Design Framework to Facilitate Adaptive Behaviours. Energy & Buildings.
Korsavi, S. S., & Montazami, A. (2018). Adaptive Behaviours and Occupancy Patterns in UK Primary Schools: Impacts on Comfort and Indoor Quality. In WiNDSOR Conference, Rethinking Comfort.
Maras, I., Buttstädt, M., Hahmann, J., Hofmeister, H., & Schneider, C. (2013). Investigating public places and impacts of heat stress in the city of Aachen, Germany. Erde, 144(3–4), 290–303.
Mishra, A. K., & Ramgopal, M. (2013). Field studies on human thermal comfort — An overview. Building and Environment, 94–106.
Montazami, A., Gaterell, M., Nicol, F., Lumley, M., & Thoua, C. (2017). Impact of social background and behaviour on children’s thermal comfort. Building and Environment, 122, 422–434.
Nicol, F., Humphreys, M., & Olesen, Bj. W. (2004). A stochastic approach to thermal comfort - Occupant behavior and energy use in buildings, (January).
Nicol, J. F., & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34(6), 563–572.
Nicol, J. Fergus. (2011). Adaptive comfort. Building Research and Information, 39(2), 105–107.
Nicol, J. Fergus, & Roaf, S. (2017). Rethinking thermal comfort. Building Research & Information, 0(0), 1–5.
Nikolopoulou, M., & Steemers, K. (2003). Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Building, 35(1), 95–101.
Nikolopoulou, Marialena, Baker, N., & Steemers, K. (2001). Thermal comfort in outdoor urban spaces: Understanding the Human parameter. Solar Energy, 70(3), 227–235.
Oliveira, S., & Andrade, H. (2007). An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. International Journal of Biometeorology, 52(1), 69–84.
Pantavou, K., Theoharatos, G., Santamouris, M., & Asimakopoulos, D. (2013). Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI. Building and Environment, 66, 82–95. https://doi.org/10.1016/j.buildenv.2013.02.014
Parkinson, T., de Dear, R., & Brager, G. (2020). Nudging the adaptive thermal comfort model. Energy and Buildings, 206(December 2019).
Parsons, K. (2002). Human Thermal Environments. Taylor & Francis Group.
Rijal, H. B., Humphreys, M. A., & Nicol, J. F. (2017). Towards an adaptive model for thermal comfort in Japanese offices. Building Research & Information, 1–13.
Rupp, F. R., Dear, R. De, & Ghisi, E. (2018). Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework. Energy & Buildings, 158, 1475–1486.
Rupp, R. F., Kim, J., Ghisi, E., & de Dear, R. (2019). Thermal sensitivity of occupants in different building typologies: The Griffiths Constant is a Variable. Energy and Buildings, 200, 11–20.
Schweiker, M., Abdul-Zahra, A., André, M., Al-Atrash, F., Al-Khatri, H., Alprianti, R., & R., ... & Azadeh, M. (2019). The Scales Project, a cross-national dataset on the interpretation of thermal perception scales. Scientific Data, 6(1), 1–10.
Schweiker, Marcel, Fuchs, X., Becker, S., Shukuya, M., Dovjak, M., Hawighorst, M., & Kolarik, J. (2017). Challenging the assumptions for thermal sensation scales. Building Research & Information, 45(5), 572–589.
Shooshtarian, S. (2015). Socio-economic Factors for the Perception of Outdoor Thermal Environments : Towards Climate-sensitive Urban Design. Global Built Environment Review, 9, 39–53.
Shooshtarian, Salman, & Rajagopalan, P. (2017). Study of thermal satisfaction in an Australian education precinct. Building and Environment.
Taleghani, M., Tenpierik, M., Van Den Dobbelsteen, A., & De Dear, R. (2013). Energy use impact of and thermal comfort in different urban block types in the Netherlands. Energy and Buildings, 67, 166–175.
Thorsson, S., Lindqvist, M., & Lindqvist, S. (2004). Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. International Journal of Biometeorology, 48(3), 149–156.
Van Hoof, J. (2008). Forty years of Fanger’s model of thermal comfort: Comfort for all? Indoor Air, 18(3), 182–201.
Wagner, A., & Brien, W. O. (2018). Exploring Occupant Behavior in Buildings. Methods and Challenges. https://doi.org/10.1007/978-3-319-61464-9
Wagner, A., & O’Brien, W. (2018). Occupant behaviour-centric building design and operation EBC Annex 79 October 2018 , updated after approval by IEA EBC Prepared by : Energy in Building and Communities Programme(EBC), (October).
Wang, Z., Dear, R. De, Luo, M., Lin, B., He, Y., & Ghahramani, A. (2018). Individual Difference in Thermal Comfort : A Literature Review. Building and Environment, 138(June), 181–193.
Williamson, T., & Daniel, L. (2018). Changing Thermal Comfort Expectations: Studies in Darwin, Australia. In WiNDSOR Conference, Rethinking Comfort (pp. 68–86).
Wu, Z., Li, N., Cui, H., Peng, J., Chen, H., & Liu, P. (2017). Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in. International Journal of Environmental Research and Public Health Article
Yahia, M. W., & Johansson, E. (2013). Evaluating the behaviour of different thermal indices by investigating various outdoor urban environments in the hot dry city of Damascus, Syria. International Journal of Biometeorology, 57(4), 615–630.
Yao, R., Li, B., & Liu, J. (2009). A theoretical adaptive model of thermal comfort – Adaptive Predicted Mean Vote (aPMV). Building and Environment, 44(10), 2089–2096.
Zacharias, J., Stathopoulos, T., & Wu, H. (2004). Spatial behavior in San Francisco’s plazas: The effects of microclimate, other people, and environmental design. Environment and Behavior, 36(5), 638–658.