نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران.

2 دانشیار، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران.

3 استادیار، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران.

4 استادیار، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران.

چکیده

قابلیت استفاده از نور خورشید در تأمین انرژی مورد نیاز بنا از طریق جذب آن توسط پوسته ساختمان لزوم توجّه به طراحی پوسته را به عنوان عنصری انرژی-کارا در ساختمان به منظور تولید انرژی الکتریکی موجب گردیده است. میزان تولید انرژی الکتریکی از یک سامانه پوسته ساختمانی یکپارچه با پیل خورشیدی به عوامل گوناگونی از جمله شرایط تابشی سایت، جهت‌گیری ساختمان نسبت به مسیر حرکت خورشید، ساختار شکلی پوسته بنا و بازده پیل خورشیدی مورد استفاده در سامانه بستگی دارد. از دسته عوامل فوق، ساختار شکلی پوسته بنا می‌تواند در ترکیب با بازتابنده‌های تخت موجب تشدید میزان تابش رسیده به سطح پوسته و درنتیجه افزایش بهره‌وری الکتریکی از سطح بنای یکپارچه با پیل خورشیدی گردد. این پژوهش با هدف بررسی اثر بازتابش بر میزان افزایش بازده پیل خورشیدی در پوسته ساختمان طی یک تحقیق آزمایشی میزان افزایش توان خروجی پیل واقع در نمای جنوبی را به میزان 13.19 درصد با اضافه کردن بازتابنده تختِ عمود بر سطح پیل در سمت غرب و شرق آن و این مقدار را برای همان پیل با افزودن بازتابنده تخت در سطح افق 11.19درصد ارزیابی نمود. از طرف دیگر تحلیل زوایای تابشی خورشید در سایت مورد مطالعه بازه‌ای معادل 26 درجه غربی تا 26 درجه شرقی را محدوده‌ای مناسب جهت الحاق پیل خورشیدی در بین دو بازتابنده تخت برای جذب حداکثر بازتابش سالانه توصیه می‌نماید. نتایج پژوهش نشان می‌دهد که بازتابنده تخت مستطیلی با عمقی معادل نصف ارتفاع پیل محصور در بین دو بازتابنده غربی و شرقی بهینه‌ترین پوشش انعکاس را در طول سال خواهد داشت. پژوهش انجام شده از منظر هدف، کاربردی و از جهت روش در دسته پژوهش‌های توصیفی-تجربی قرار دارد و نتیجه‌گیری به روش استدلال منطقی است.

کلیدواژه‌ها

عنوان مقاله [English]

Improving the Efficiency of Electricity-Generating Building Envelopes Using a Hybrid System of Flat Concentrator & Photovoltaic Panels (FCPV) in South Facade

نویسندگان [English]

  • Alireza Farhangi Khanghah 1
  • Yousef Gorji Mahlabani 2
  • S. Majid Mofidi Shemirani 3
  • Hossein Medi 4

1 PhD Student in Architecture, Faculty of Architecture & Urban Development, Imam Khomeini International University, Qazvin, Iran

2 Associate Professor, Faculty of Architecture & Urban Development, Imam Khomeini International University, Qazvin, Iran

3 Assistant Professor, School of Architecture & Environmental Design, Iran University of Science & Technology, Tehran, Iran

4 Assistant Professor, Faculty of Architecture & Urban Development, Imam Khomeini International University, Qazvin, Iran

چکیده [English]

The capacity of buildings to use solar radiance to supply their energy needs via absorbing sun-light energy through the outer envelope makes it so vital to have a substantial consideration to the design of buildings’ shell as an energy-efficient element. The amount of electrical energy output of a building integrated photovoltaic (BIPV) relates to various factors such as solar incidence of its platform, optimum orientation of building toward the Sun, form of its shell as well as the efficiency of photovoltaic modules used within the system as electricity generator. From mentioned factors, the form of a building envelope can intensify the yield of a BIPV system by being integrated to solar plain concentrators which known as CPV system. This research tries to monitor the effect of reflection on BIPV envelope efficiency improvement by doing an experimental test in which the increase of the output of a south-oriented photovoltaic module under a flat mirror reflection has been evaluated. The research concludes an improvement equal to 13.19% in output power by adding the flat mirror on the east/west sides of the module and 11.19% increase for a flat horizontal mirror perpendicular to the PV on southern façade. On the other hand, the research recommends the angle of 26 degrees inclination from the east and west for mirrors to reach to their best solar situation in which there is no shading effect on the PV surface. Moreover, results of this research shows that the best proportion for a rectangular mirror as a reflector is when its depth to height ratio is 0.5 or D/H=0.5. The research is categorized as an applied research which uses experimental-descriptive method to reach the goals.

کلیدواژه‌ها [English]

  • Building Envelope
  • Energy-Efficient
  • Photovoltaic Panel
  • Flat Reflector
  • Integrated System
  • Output Power
-         سازمان بهره‌وری انرژی ایران (1395). سابا، بازیابی در 11.20. 1395، از سازمان بهره‌وری انرژی ایران: http://www.saba.org.ir/fa/masrafeenergy/industry2/consumption
-         رئوفی‌راد، م. (1385). طراحی سیستمهای خورشیدی ساختمان در ایران، تهران: فدک ایساتیس(به سفارش شرکت بهینه‌سازی مصرف سوخت).
-         کلهر، ح. (1387). مهندسی روشنایی، تهران: شرکت سهامی انتشار.
-         Abu-Bakar, S., Muhammad-Suki, F., Ramirez-Iniguez, R., Freier, D., Mallick, T., Munir, A., et al. (2016). Novel Opticalc Concentrator Technology for Building Integrated Photovoltaic Systems. 2016 World Conference on Innovation, Engineering and Technology. Sapporo,Japan: OpenAIR@ RGU.
-         Ahmad, G. & Hussein, H. (2001). Comparative Study of PV Modules with and without a Titled Plane Reflector. Energy Conversion and Management, 42, 1327-1333.
-         Al-Waeli, A. H., Sopian, K., Kazem, H. K. & Chaichan, M. T. (2016). Photovoltaic Solar Termal( PV/T) Collectors Past, Present and Future: A Review. International Journal of Applied Engineering Research, 11(22), 10757-10765.
-         Avezov, R. R., Akhatov, J. S. & Avezova, R. (2011). A Review on Photovoltaic -Thermal (PV-T) Air and Water Collector. Applied Solar Energy, 47(3), 169-183.
-         Barman, J. (2011). Design and Feasibility Study of PV Systems in Kenya. Master's Thesis within the Sustainable Energy System Programme. Gotenberg, Sweden: Chalmers University of Technology.
-         Bilal, M., Arbab, M. N., Afridi, M. & Khattak, A. (2016). Increasing the Output Power and Efficiency of Solar Panel by Using Concentrator Photovoltaics (CPV). International Journal of Engineering Works, 3, 98-102.
-         Briggs, D. (2016). A Glossary of Sustainable Communities-Related Terminology. Maryland. Retrieved 2 8, 2018, from Defined Term: https://definedterm.com/a/definition/244613
-         Chen, Y., fazio, P., Athienitis, A. & Rao, J. (2012). Sustainable Building Design In Cold Regions: High Performance Envelop and Facade-integrated Photovoltaic/Solar Thermal Systems at High Latitudes. Cold Regions Enginnering 2012: Sustainable Infrastructure Development in a Changing Cold Environment, 199-209.
-         Dean, B., Dulac, J., Petrichenko, K. & Graham, P.(2016). Towards Zero-emission Efficient and Resilient Buildings: Global Status Report 2016. Nairobi: UNEPT.
-         Delisle, V. & Kummert, M. (2014). A Novel Approach to Compare Building-integrated Photovoltaics/thermal Air Collectors to Side-by-Side PV Modules and Solar Thermal Collectors. Solar Energy, 100, 50-65.
-         Delponte, E., Marchi, F., Frontini, F., Polo, C., Fath, K. & Batey, M. (2015). BIPV in EU28, from Niche to Mass Market: An Assessment of Current Projects and the Potential for Growth through Product Innovation. 31st Euro Photovoltaic Solar Energy Conference Exhibition, (pp. 3046–3050). Munich.
-         Hegger, M., Fuchs, M., Stark, T. & Zeumer, M. (2008). Energy Manual; Sustainable Architecture. Basel, Switzerland: Kosel GmbH& Co.KG,Altusreid-krugzell.
-         Hofer, J., Groenewolt, A., Jayathissa, P. & Nagy, Z. (2016). Parametric Analysis And System Design Of Dynamic Photovoltaic Shading Modules. Energy Science And Engineering, 134-152.
-         Ibrahim, A., Mohd Yusef, O. & Mohd Hafiz, R. (2011). Experimental Studies on Water based Photovoltaic Thermal Collector(PV/T). Selected Topics in System Science and Simulation in Engineering, 439-443.
-         IEA (2013). Transition to Sustainable Buildings: Strategies and Opportunities to 2050. Paris: International Energy Agency/OECD.
-         IEA (2013). World Energy Outlook 2013. OECD/International Energy Agency.
-         IEA (2016) Energy Technology Perspective2016;Towards Sustainable Urban Energy Systems. Paris: International Energy Agency/OECD.
-         Jin, G. L., Ibrahim, A., Chean, Y. K., Daghigh, R., Ruslan, H., Mat, S., et al. (2010). Evaluation of Single-Pass Photovoltaic-Termal Air Collector with Rectangle Tunnel Absorber. Recent Advances in Applied Mathematics, 493-498.
-         Keller, A. F. (2013). Recharging the Facade: Designing and Constructing Novel BIPV Assemblies. M.Sc Thesis. Masachusetts: Massachusetts Institute of Technology.
-         Khelifa, A., Touafek, K., Ben Mousa, H. & Tabet, I. (2016). Modeling and Detailed Study of Ybrid Photovoltaic Thermal (PV/T) Solar Collector. Solar Energy, 135, 169-176.
-         Kovach, A. & Schmid, J. (1996). Determination of Energy Output Losses due to Shading of Building-Integrated Photovoltaic Arrays Using a Raytracing Technique. Solar Energy, 57, 117-124.
-         Lechner, N. (2015). Heating,Cooling, Lighing; Sustainable Methods for Architects (4 ed.). Hoboken, New Jersey: John Wiley & Sons.
-         M.Ronnelid, Karlsson, B., Krohn, P. & Wennerberg, J. (2000). Booster Reflectors for PV Modules in Sweden. Progress in Photovoltaics: Research and Applications, 8, 279-291.
-         Martinez-Rubio, A., Sanz-Adan, F. & Santamaria, J. (2015). Optimal Design of Photovoltaic Energy Collectors with Mutual Shading for Pre-existing Building Roofs. Renewable Energy, 78, 666-678.
-         Matsushima, T., Setaka, T. & Muroyama, S. (2003). Concentrating Solar Module with Horizental Reflectors. Solar Energy Materials and Solar Cells, 75, 603-612.
-         McIntosh, K., Abbott, M. & Sudbury, June (2011). Solar Spectrum Calculator, Retrived in 26.12.2017,PV Lighhouse: https://www.pvlighthouse.com.au/
-         Mustafa , A., Arif , H., Shahrestani, M., Runming, Y., Li , S., Emmanuel, E., et al. (2017). A Key Review of Building Integrated Photovoltaic (BIPV) Systems. Engineering Science and Technology, an International Journal, 20, 833-858.
-         Nemati Jahrom, S., Vadiee, A. & Yaghoubi, M. (2015). Energy and Economic Evaluation of Commercially Available PV/T Collector for Different Climates in Iran. Energy Procedia, 75, 444-456.
-         Kumar, R. & Rosen, M. (2011). A Critical Review of Photovoltaic-Thermal Sollar Cllectors for Air Heating. Applied Energy, 88.
-         Roeleveld, D., Kumar, R., Naylor, D. & Fung, A. (2016). A CFD Study of Natural Convection Inside a BIPV/T System. eSim 2016 (pp. 319-326). Ontario, Canada: McMaster University.
-         Seitel, S. C. (1975) Collector Performance Enhancement With Flat ReflectorS. Solar Energy.
-         Soria, B., Gerristen, E., Leffillastre, P. & Broquin, J. E. (2016). A Study of the Annual Performance of Bifacial Photovoltaic Modouls in the Case of Vertical Facade Integration. Energy Science and Engineering, 4(1), 52-68.
-         Soria, B., Gerritsen, E., Leffillaster, P. & Broquin, J. E. (2016). A Study of Annual Performance of Bifacial Photovoltaic Modules in the Case of Vertical Facade Integration.
-         SUPSI. (2015). BiPV. (SUPSI) Retrieved 3 9, 2015, from http://www.bipv.ch/index.php/en/
-         Tabaei, H., & Ameri, M. (2015). Improving the Effectiveness of Photovoltaic Water Pumping System by Using Booster Reflector and Cooling Array Surface by a Film of Water. Transactions of Meccchanical Engineering, 39, 51-60.
-         Tabakovic, M., Fechner, H., Sark, W. V., Louwen, A., Georghiou, G., Makrides, G., et al. (2017). Status and Outlook for Building Integrated Photovoltaics (BIPV) in Relation to Educational Needs in the BIPV Sector. Energy Procedia, 993-999.
-         Thomas, R. & Forham, M. (2001). Photovoltaics and Architecture. (R. Thomas, M. Fordham, & Partners, Eds.) London: Spon Press.
-         Vickstrom, E. (2016). Building-Integrated Photovoltaics (BIPV): Technologies and Global Markets. Massachusett: BccResearch.
-         WE Council (2016). World Energy Resources. London: World Energy Council.
-         Yun, G. Y., Mc Evoy, M. & Steemers, K. (2007). Design and Overal Energy Performanve of a Ventilated Photovoltaic Facade. Solar Energy, 81, 383-394.