نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری، دانشکده معماری و شهرسازی، واحد اصفهان(خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.

2 استادیار، دانشکده معماری و شهرسازی، واحد اصفهان(خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.

3 استادیار، گروه معماری، دانشکده هنر و معماری، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.

چکیده

ایده تعمیق در طبیعت و توجه به نحوه رشد و شکل‌گیری پدیده‌های زیستی بجای تقلید از لایه‌های سطحی و شکلی، سابقه‌ای طولانی دارد. لیکن در عمل، توانایی علمی و فنی کافی برای اجرای آن وجود نداشته است. شاید بتوان دلیل آن را انتخاب سطحی موضوعات پیچیده و غیر قابل احاطه به لحاظ ضعف در زمینه‌های علمی و یا نبود امکانات فنی برای اجرا دانست. حال با عنایت به تحولات فنی و علمی در چند دهه اخیر امکان‌پذیری چنین رویکرد ماهیتی، دور از ذهن نمی‌باشد.  ظهور نظریات و روش‌های رایانشی نوین بر گرفته از سیستم‌های زیست‌شناختی، در طی چند دهه اخیر، تعمیق در اصول و قواعد فرآیند تولید فرم را امکان‌پذیر نموده است. پؤوهش حاضر به دنبال پاسخگویی به این سوال است که چگونه می‌توان الگو‌های رشد و شکل‌گیری پدیده‌های زیستی را در روشمند‌سازی فرآیند تولید فرم معماری به کار بست؟ هدف مقاله حاضر بررسی چگونگی الگو‌سازی از فرآیندهای رشد و شکل‌گیری پدیده‌های زیستی در روشمند‌سازی فرآیند تولید فرم در حوزه معماری می‌باشد. یکی از الگوهای مطرح در فرآیند رشد پدیده‌های زیستی، الگوی رشد دیفرانسیلی می‌باشد. روش تحقیق در پژوهش پیش رو، بصورت توصیفی تحلیلی میباشد و گردآوری اطلاعات شامل مطالعات کتابخانه ای و اسناد و مدارک هست. پس از مرور سوابق نظری و عملی رایانشی ملهم از اصول زیست‌شناختی و بررسی سیر تکوینی آنها، با استفاده از روش تحقیق شبیه‌سازی با راهبرد استدلال منطقی، الگوی رشد دیفرانسیلی، در یک فرآیند تولید فرم معماری مورد آزمایش و بررسی قرار گرفت. به نحوی که طی یک آزمایش شبیه‌سازی، مدلی از الگوهای رشد در تولید فرم رایانشی ارایه گردید. با توجه به آزمایش صورت گرفته، نتیجه‌گیری می‌شود شبیه‌سازی الگوریتمیک الگوهای رشد و شکل‌گیری پدیده‌های زیستی از مجرای رایانشی، در خلق روشهای نوین فرآیند تولید فرم معماری می‌تواند مؤثر واقع گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the evolution of the role of computing in modeling the processes of formation of natural phenomena in the production of architectural forms

نویسندگان [English]

  • Yashar Gharachamani Asl 1
  • Mohamad Baharvand 2
  • Sahar Toofan 3

1 Ph.D Candidate in Architecture, Faculty of Architecture & Urban Planning, Isfahan Branch (Khorasgan), Islamic Azad University , Isfahan, Iran.

2 Assistant Professor, Faculty of Architecture & Urban Planning, Isfahan Branch (Khorasgan), Islamic Azad University , Isfahan, Iran.

3 Assistant Professor, Department of Architecture, Faculty of Arts and Architecture, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

چکیده [English]

Extended Abstract
Objective and Background:Thinking about nature, paying attention to how biological phenomena grow and take shape - has a long history - rather than superficial and formal imitation. But in practice, there was not enough scientific and technical ability to implement it. This may be due to the superficial selection of complex and unambiguous topics due to weakness in scientific fields or lack of technical facilities for implementation. Given the technical and scientific developments in recent decades, the possibility of such an inherent approach is not far from the mind. The emergence of new theories and computing methods derived from biological systems over the past few decades have made it possible to deepen the principles and rules of the form production process. The main question is: how can patterns of growth and formation of biological phenomena be used in methodizing the process of producing architectural forms? The main purpose of this article is to investigate how to model the growth processes and the formation of biological phenomena in the methodization of the form production process in the field of architecture. One of the patterns in the growth process of biological phenomena is the differential growth pattern.
Methods: The research method in the present research is descriptive-analytical and data collection includes library studies and documents. First, the theoretical and practical backgrounds of computing inspired by biological principles and their evolutionary evolution were examined. Then, using a simulation research method with a logical reasoning strategy, a differential growth pattern was formed. Finally, during a process, the production of the architectural form was tested and examined. In a simulation experiment, a model of growth patterns in the production of computer form was presented. In the analytical part of the present study, considering the importance of the role of algorithmic thinking in modeling the growth process and the formation of biological phenomena for the computational production of architectural form, a logical reasoning strategy to establish a logical thinking system in establishing a relationship between biological realities in the growth process. With the abstract values of producing architectural form, it has been used to form a general conceptual framework in order to describe the subject and formulate growth guidelines.
Findings: It started with the classification and analysis of theories in the field of computing inspired by biological processes, according to the time hierarchy of their occurrence, then continued with the introduction of new computing methods inspired by biological principles and finally using such theories and methods in The production of the digital form is over. The result is evidence of the historical and evolutionary course of such an approach from theory to practice. For more clarity, theories, methods, and manufacturing processes are presented below a time frame of evolution. Which is a new step in this field of research. Achieving the ability to simulate computational theories demonstrates the possibility of modeling growth processes and the formation of biological phenomena in the process of producing an architectural form in a path called computing. With this process, the growth algorithm is programmed in the computer space and then equated. So that all the parameters affecting the formation and growth of the organism are identified, to be entered in the algorithm and then the virtual growth process takes place. The result of such an algorithm is the application of the construction method of these organisms to architectural projects and the use of the characteristics of that organism to increase the efficiency of space. Architecture in this process can inherit the qualities that the process of natural production has given to the organism and imitate the natural organism in its appearance and form and in its function and behavior.
Conclusion: The form of the process is first generated in the virtual environment by entering various environmental parameters as well as various growth patterns. Then, if it responds to the mentioned environmental conditions and parameters, it will be placed in the path of digital manufacturing and will be built physically. As a result, the presence of such forms in the not-too-distant future in urban environments and architecture is not out of the question. Therefore, the direction of research is more in the field of opinion. Attempts have been made to create a new design logic from the path of growth patterns in the field of architecture. Naturally, this research is the beginning of further research in areas such as biology and algorithms. Subsequent researchers can examine and test other natural patterns, with a wider range of variables, in the algorithmic process, and step into the development of the research literature. The main result is that: Algorithmic simulation of growth patterns and the formation of biological phenomena through the computer channel can be effective in creating new methods of the architectural form production process.

کلیدواژه‌ها [English]

  • Biology
  • Growth Pattern
  • Differential Growth Algorithm
  • Computational Form Generation
تورانی، احمد رضا. (1393). مبانی نظری در معماری هزاره سوم. تهران: انتشارات اول و آخر.
تراز، معصومه. (1391). معماری بیونیک (زیست صنعت)، طراحی پارک علم و فناوری. پایان نامه کارشناسی ارشد. تهران: دانشگاه تهران، پردیس هنرهای زیبا، دانشکده معماری.
خبازی، زوبین. (1393). فرآیندهای طراحی دیجیتال. مشهد: کتابده کسری.
خبازی، زوبین. (1395). پارادایم معماری الگوریتمیک. مشهد: کتابده کسری.
خبازی، زوبین. (1395). نهشت دیجیتال مواد. مشهد: کتابده کسری.
فراهانی، فریدون. (1395). انسان، طبیعت، طراحی: بازتاب طبیعت در هنر و معماری. اصفهان: نشر گفتمان اندیشه معاصر.
قارونی اصفهانی، فاطمه. (1394). معماری بایونیک، طراحی طبیعت. تهران: مولف.
قبادیان، و. (1388). مبانی و مفاهیم در معماری معماصر غرب (نسخه چاپ 12). تهران: دفتر پژوهش‌های فرهنگی.
کابلی، محمد هادی و خندان، الناز. (1394). 101 گزاره بیومیمیکری در معماری. تهران: انتشارات اول و آخر.
گروبر، پترا. (1395). معماری بیونیک ( الگوهای زیستی در معماری). ت: محمد زارع. تهران: جهاد دانشگاهی، سازمان انتشارات.
گروت، ل.، و وانگ، د. (1384). روش تحقیق در معماری، (مترجم: عینی فر، ع.ر)، تهران: دانشگاه تهران. موسسه انتشارات
گلابچی، محمود. (1391). تعامل تکنولوژی و معماری- بررسی و نقد آثار نورمن فاستر. تهران: انتشارات دانشگاه تهران.
Abdullah, A.A., (2019), Computational Approach and Morphogenesis; Role of nature in concept generation process in design and architecture, Journal of Design Studio, V.1, N.1, pp 22-28.
Antonelli, P. Curator, S. (2020). Neri Oxman: Materialogy. New York: The Museum of Modern Art, New york
Beni, G. (2004). From swarm intelligence to swarm robotics. Paper presented at the International Workshop on Swarm Robotics.
Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems (No. 1). Oxford university press.
Bovill, C. (1996). Fractal geometry in architecture and design.
Christos Stergiou and Dimitrios Siganos, "Neural Networks, " Surprise 96 (London: Imperial College of Science Technology and Medicine)
Clipson.C.1993. Simulation for planning and Design. New York: Springer Science+Business Media
Davies.Jamie, A. (2015). MECHANISMS OF MORPHOGENESIS.Elsevier’s Science & Technology Rights Department in Oxford, UK, Elsevier Academic Press
Frazer, J. (1995). An evolutionary architecture. London: Architectural Association Publications.
Frazer, J. H., Frazer, J. M., Liu, X., Tang, M. X. & Janssen, P. (2002). Generative and evolutionary techniques for building envelope design. 5th International GenerativeArt.
Frenay, R. (2008). Pulse: The coming age of systems and machines inspired by living things. Lincoln: University of Nebraska Press
Guidera, S. (2011). Conceptual Design Exploration in Architecture Using Parametric Generative Computing: A case Study. Connecting Concepts in Sustainable Design and Digital Fabrication: A Project-Based Learning Case Study (pp. 2728-2748). Bowling green: American Society for Engineering Education.
Graph-Grammars and Their Application to Computer Science 291 (1987)
Hensel, M., Menges, A. & Weinstock, M. (2013). Emergent technologies and design: towards a biological paradigm for architecture: Routledge.
Hensel, M. & Menges, A. (2008). Versatility and Vicissitude: An Introduction to Performance in Morpho‐Ecological Design. Architectural Design, 2 (78): 6-11.
Hensel, M. (2014). Performance-oriented architecture: rethinking architectural design and the built environment. John Wiley & Sons.
Hensel, M. U. (Ed.). (2008). Versatility and vicissitude: performance in morpho-ecological design. Wiley.
Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267: 66-72.
Ichmeli, M, (2014), Digital Morphogenesis in Architectural Design, Gediz University, Architecture Department.
Iwamoto, L. (2009). Digital fabrications: architectural and material techniques. Princeton Architectural Press.
Klooster, T. Boening, N. Davis, S. & Seeger, A. (2009). Smart surfaces: and their application in architecture and design Vol. 85 Birkhäuser Basel.
Klooster, T. (2009). Smart surfaces–and their application in architecture and design. Germany: Birkhauser.
Kudless, A. Bodies in Formation: the material evolution of flexible formworks. (2011). California College of the Arts.
Leach, N. (2015). Digital cities. Architectural Design, 4 (79): 6-13.
Lindenmayer.A  &  Prusinkiewicz, P. (1990). The Algorithmic Beauty of Plants. New York: Springer-verlag
Mairopoulos, D. (2015). M-Cell assembly. Doctoral dissertation. Massachusetts Institute of Technology (MIT
Oxman, N. (2012). Towards a material ecology. In 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), San Francisco.
Prusinkiewicz, P. (1986). Applications of L-systems to computer imagery. Paper presented at the International Workshop on Graph Grammars and Their Application to Computer Science.
Rastogi, Manit., Rastogi, Sonali., (2017). Morphogenesis: The Indian Perspective. The Global Context. India: Images Publishing Dist Ac
Robert, A. W. & Frank, K. (2012). The MIT Encyclopedia of the Cognitive Sciences.
Rosenman, M. & Gero, J. (1999). Evolving designs by generating useful complex gene structures. Evolutionary design by computers: 345.
Sabin, J.E., Lloyd Jones, P. (2017). LABSTUDIO: Design Research Between Architecture and Biology. London & New York: Routledge Taylor and Francis.
Schmidt, P. Stattmann, N. (2009). UNFOLDED: Paper in Design, Art, Architecture And Industry: Birkhäuser.
Steadman, P. (2008). The Evolution of Designs: Biological analogy in architecture and the applied arts. Routledge.
Steadman, P. (2008). The Evolution of Designs: Biological analogy in architecture and the applied arts. Routledge.
 Wolfram,S. (1983) "Statistical Mechanics of Cellular Automata,” Rev. Mod. Phys.
Tedeschi, A. (2014). AAD, Algorithms-aided design: parametric strategies using Grasshopper. Le penseur publisher.
Tonner, P.D, Darnell, C.L, Engelhardt, B.E, Schmid, A.K. (2016). Detecting differential growth of microbial populations with Gaussianprocess regression. Program in Computational Biology and Bioinformatics, Duke University, Durham, NC27708, USA.
Winston .Patrick H. (1992). Artificial Intelligence.
Wilson, R. A. & Keil, F. C. (2001). The MIT encyclopedia of the cognitive sciences. MIT press: 37-39.
Oxman, N. 2020. Materialecology. Avalaible from: https: //www.neri.media.mit.edu [Accessed 10 January 2019]
Hemberg, M. 2009. Genr8. Avalaible from: http: // projects .csail .mit .edu/emergentDesign/genr8 [Accessed 5 February 2017]
Sabin, J. 2020. Jenny Sabin Studio. Avalaible from: https: //www.jennysabin.com [Accessed 8 February 2020]
Kudles, A. 2020. Matsys. Avalaible from: https: //www.matsys.design [Accessed 24 Mrach 2020]
Bosse, C. 2020. Avalaible from: http: //www.chrisbosse.com [Accessed 23 April 2020]
Britannica. 2020. Avalaible from: http//: britannica.com [Accessed 3 January 2015]
Massachusetts Institute of Technology School of Architecture. 2020. Avalaible from: http: //www.architecture.mit.edu [Accessed 3 January 2019]
fractalus, 20. Avalaible from: http//: fractalus.com [Accessed 3 January 2017]