نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه معماری، دانشکده هنر و معماری، دانشگاه شیراز، شیراز، ایران.

2 استادیار، گروه معماری، دانشکده هنر و معماری، دانشگاه شیراز، شیراز، ایران.

چکیده

استفاده از بام سبز یکی از راهکارهای متداول جهت کاهش بار حرارتی ساختمانهاست. از طرف دیگر استفاده از سطوح خنک و فضای سبز جهت تغییر خرداقلیم و کاهش جزیره گرمایی شهری، پیشنهاد می‌شود. مقاله حاضر با هدف بررسی میزان تاثیر دو نوع بام سبز درخت و چمن بر خرداقلیم حرارتی در اقلیم گرم و خشک انجام شده است. نمونه مورد مطالعه بخشی از بافت کوتاه مرتبه شهر شیراز بوده و پژوهش به روش شبیه‌سازی حرارتی محیط خارجی با استفاده از نرم‌افزار انویمت در دو روز از گرم‌ترین روزهای سال انجام شده است. بدین منظور تاثیرات حرارتی سه نمونه بام متداول با پوشش نهایی ایزوگام، بام سبز با چمن و بام سبز با درخت بر محیط محله اطراف مورد بررسی قرار گرفته است. نتایج پژوهش نشان می‌دهد استفاده از بام سبز با درخت و چمن تاثیر اندکی بر کاهش دمای خرداقلیم دارد. در گیرنده‌های مختلف، حداکثر کاهش ایجاد شده در دمای هوا بین 0.27 تا 0.74 درجه و در دمای تابشی 5.05 درجه است. بیشترین تغییرات رطوبت نسبی شامل 0.36 درصد افزایش و 0.48 درصد کاهش و در مورد سرعت باد شامل حداکثر 0.68 متر بر ثانیه افزایش در مقادیر بوده و تغییرات این متغیرها، در بیشترین حالت تغییری معادل 1.52 در ضریب آسایش حرارتی ایجاد می‌کند. تحلیل همبستگی انجام شده میان متغیرها و آسایش حرارتی ایجاد شده در حالت‌های مختلف، وجود ضریب معناداری قوی را نشان می‌دهد. کارایی بام سبز با درخت، به دلیل تأثیر درختان بر کاهش میزان دمای متوسط تابشی بیشتر از بام سبز با چمن است و شرایط آسایش حرارتی مطلوب‌تری در مقیاس خرداقلیم محلی ایجاد می‌کند. به این ترتیب محدوده احداث بام سبز، در مقایسه به نوع آن از اهمیت بیشتری برخوردار است. ایجاد بام سبز در محدوده کوچک (بلوک شهری و واحد همسایگی) تاثیری اندک بر شرایط حرارتی خرداقلیم دارد.

چکیده تصویری

ارزیابی تاثیر بام سبز بر خرداقلیم شهری؛ نمونه موردی: بافت کوتاه مرتبه اقلیم گرم و خشک شیراز

تازه های تحقیق

- گستره احداث بام سبز در مقایسه با نوع آن از اهمیت بیشتری برخوردار است.
- از میان انواع بام سبز، بام سبز با درخت بیشترین تاثیر را در کاهش دمای متوسط تابشی دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Assessing the Effect of Green Roofs on Urban Microclimate, Case study: the Low-Rise Context in Hot-Dry Climate of Shiraz

نویسندگان [English]

  • Sina Karamirad 1
  • Roza Vakilinezhad 2

1 M.A. in Architecture, Department of Architecture, School of art and architecture, Shiraz University, Shiraz, Iran.

2 Assistant Professor, Department of Architecture, School of art and architecture, Shiraz University, Shiraz, Iran.

چکیده [English]

Extended Abstract
Background and Objectives: In recent years, various solutions have been proposed to reduce urban heat islands. The most common of these strategies is the use of cool surfaces (on roofs and sidewalks and vegetation surfaces) and increasing green space. However, the shape of urban blocks, the duration of direct sunlight, and the average radiant temperature play an important role in the thermal comfort of the outer space of cities. The microclimatic temperature conditions of the city affect the thermal behavior of buildings as well as the thermal comfort of pedestrians. Since the simplest way to change the microclimate and reduce the urban heat island is to use cool surfaces and increase green space, in recent decades, the use of green roofs in different climatic regions has expanded. The application of green roofs is one of the common strategies to reduce the thermal load of buildings. On the other hand, it is recommended to use cool surfaces and greenery to change the microclimate and mitigate urban heat islands. This research aims to investigate the effect of green roofs on the urban microclimate in the hot and dry climate.
Methods: This study aims to determine the effect of green roofs on local microclimate and urban heat island in the low-rise contexts in the hot and dry climate of Shiraz. The research method used in this research is a computer simulation method, carried out using Envi-met software. Envi-met is a 3D simulation and measurement software for microclimatic conditions of urban climate and is used to analyze the open spaces of urban environments. This software has been selected due to its numerous capabilities and different validated results. The case study is a part of a low-rise urban context in Shiraz, and the research was carried out using Envi-met software for thermal simulation of the outside environment on one of the hottest days of the year. Thermal effects of three roof types on the surrounding environment have been evaluated: a common roof with reflecting isolation layer, a green roof with grass, and a green roof with trees. The simulation was done for the first day of July as one of the hottest days of the year. Data output is taken at the height of 0.5 m above the roof surface (6.5 m above the ground).
Findings: The results show that the application of green roofs with trees or grass would slightly improve thermal comfort in the neighborhood. The maximum reduction in air temperature is between 0.27 to 0.74 degrees in the receptors, and 5.05 degrees in mean radiant temperature. In the case of relative humidity, the maximum changes are an increase of 0.36% or a decrease of 0.48%, while the maximum fluctuation of wind speed is an increase by 0.68 m/s. The analysis of the correlation coefficients between the variables and the thermal comfort index of PMV shows a significant correlation. In verifying the results, they are represented as descriptive statistics, including the changes in the variables of air temperature, radiant temperature, wind speed, humidity and thermal comfort. In addition, the relationship between radiant temperature, air temperature, relative humidity and wind speed and the thermal comfort has been investigated using statistical analysis and the coefficient of correlation between them has been calculated in three modes: green roof with grass and green roof with tree at 9 am and 5 pm. The correlation coefficients in most cases are more than 0.7 and indicate a strong correlation. In this way, the obtained correlation coefficients show a strong significant direct relationship.
Conclusion: Providing A green roof with trees is more efficient than a green roof with grass providing better thermal comfort conditions in urban microclimates. The green roof area is more important than the green roof itself. The application of green roofs in small areas (urban blocks and neighboring) has little effect on the thermal comfort of the microclimate. It would effectively reduce air temperature and cooling effect only if it is used in a vast area. The correlation between the variables and the thermal comfort created in different conditions shows a strong correlation. Based on the results, the extent and the size of the green roof have a more important effect on the region’s microclimate. These results are consistent with previous studies (Battista et al., 2016: 1058) and (Peng et al., 2013: 598) and (Alcazar et al., 2016: 304) and indicate that considering green roofs in small extents such as an urban block or a neighborhood unit has little effect on the microclimatic conditions of the region. In order to benefit from the cooling effects of green roofs and reduce the heat on an urban microclimate scale, it is necessary to use green roofs in a wider area. In summary, the following can be extracted from the results of the present study:
- Using a green roof can slightly reduce the outdoor temperature and improve thermal comfort conditions on a neighborhood scale.
- A green roof with trees is more effective than a green roof with grass, and from this point of view, it is more preferred.
- If the use of green roofs is considered as a solution to reduce air temperature and improve thermal comfort conditions, it should be considered in large urban areas (several urban blocks or several neighborhood units).

کلیدواژه‌ها [English]

  • Green Roof
  • Microclimate
  • Envi-met
  • Urban Heat Island
  • Outdoor Thermal Comfort
  1. Ahmadi, Mahmoud & Dadashi Rudbari, Abbas Ali. (2017). Identification of urban thermal islands based on environmental approach (Case study: Isfahan metropolis), Geography and Environmental Planning, 28 (3), 1-20 [In Persian].
  2. Alcazar, S., Olivieri, F. & Neila, J. (2016). Green roofs: Experimental and analytical study of its potential for urban microclimate regulation in Mediterranean–continental climates. Urban Climate, 17, 304–317.
  3. Aleksandrowicz, O., Vuckovic, M., Kiesel, K. & Mahdavi, A. (2017). Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Climate, 21, 1–26.
  4. Alexandria, E. &Jones, P. (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment, 43, 480–493.
  5. Battista, G., Pastore, E. M., Mauri, L. & Basilicata, C. (2016). Green roof effects in a case study of Rome (Italy). Energy Procedia, 101, 1058 – 1063.
  6. Berardi, U. (2016). The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy and Buildings, 121, 217–229.
  7. Brown, C. & Lundholm, J. (2015). Microclimate and substrate depth influence green roof plant community dynamics. Landscape and Urban Planning, 143, 134–142.
  8. Coppola, E. & Giorgi, F. (2010). An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations. International Journal of Climatology, 30, 11-32.
  9. Djedjig, R, Bozonnet, E. & Belarbi, R. (2015). Experimental study of the urban microclimate mitigation potential of green roofs and green walls in street canyons. International Journal of Low-Carbon Technologies, 10, 34–44.
  10. Google. (2019).Retrieved from https://www.google.com/earth/ , 29.08.2019, 14:25:30
  11. Halabian, Amir Hossein & Soltani, Zahra. (2020). Analysis of spatial-temporal changes of urban heat islands and land use with environmental approach in Shiraz, Urban Structure and Function Studies, 7(24), 73-97 [In Persian].
  12. He, H. and C.Y. Jim, (2010). Simulation of thermodynamic transmission in green roof ecosystem. Ecological Modelling, 221, 2949–2958.
  13. Jin, Ch., Bai, X., Luo, T. & Zou, M. (2018). Effects of green roofs’ variations on the regional thermal environment using measurements and simulations in Chongqing, China. Urban Forestry and Urban Greening, 29, 223-237.
  14. Karachaliou, P., Santamouris, M. & Pangalou, H. (2016). Experimental and numerical analysis of the energy performance of a large scale intensive green roof system installed on an office building in Athens. Energy and Buildings, 114, 256–264.
  15. Kolokots, D., Santamouris, M., Zerefos, & S.C. (2013). Green and cool roofs’ urban heat island mitigation potential in European climates for office buildings under free floating conditions. Solar Energy, 95, 118–130.
  16. Moghbel, M. & Erfanian Salim, R. (2017). Environmental benefits of green roofs on microclimate of Tehran with specific focus on air temperature, humidity and CO2 content. Urban Climate, 20, 46–58.
  17. Moody, S. S. & Sailor, D.J. (2013). Development and application of a building energy performance metric for green roof systems. Energy and Buildings, 60, 262–269.
  18. Morakinyo, T. E., Kalani, K.W.D., Dahanayake, C., Ng, E. & Chow, C. L. (2017). Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy and Buildings,145, 226–237.
  19. Ouldboukhitine, S., Belarbi, R., Sailor, D. J. (2014). Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings. Applied Energy, 114, 273–282.
  20. Pastore, L., Corrao, R. & Heiselberg, P. K. (2017). The effects of vegetation on indoor thermal comfort: The application of a multi-scale simulation methodology on a residential neighborhood renovation case study. Energy and Buildings, 146, 1–11.
  21. Peng, L.H. & Jim, C.Y. (2013). Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation. Energies, 6, 598-618.
  22. Rakotondramiaran, H. T., Ranaivoariso, T. F. & Morau, D. (2015). Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar. Buildings, 5, 497-520.
  23. Razzaghmanesh, M., Beecham, S. & Salemi, T. (2016). The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban Forestry & Urban Greening, 15, 89–102.
  24. Razzaghmanesh, M., Beecham, S. & Salemib, T. (2016). The role of green roofs in mitigating Urban Heat Island effects in themetropolitan area of Adelaide, South Australia. Urban Forestry & Urban Greening, 15, 89–102.
  25. Sarbaz Demiri, Jalaluddin. (2019). Investigating the Impact of Urban Green Space on the Temporal-Spatial Distribution of the Thermal Islands of Shiraz, M.Sc. Thesis, Faculty of Literature and Humanities, Department of Natural Geography, Mohaghegh Ardabili University [In Persian].
  26. Silva, C. M., Glَria Gomes, M. & Silva, M. (2016). Green roofs energy performance in Mediterranean climate. Energy and Buildings, 116, 318–325.
  27. Souza, U. D. (2013). The thermal performance of green roofs in a hot, humid microclimate. WIT Transactions on Ecology and The Environment, 173, 475-486.
  28. Speak, A.F., Rothwell, J.J., Lindley, S.J. & Smith, C.L. (2013). Reduction of the urban cooling effects of an intensive green roof due to vegetation damage. Urban Climate, 3, 40–55.
  29. Susca, T., Gaffin, S.R. & Dell’Osso, G.R. (2011). Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution, 159, 2119-2126.
  30. Takebayashi, H. & Moriyama, M. (2009). Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Solar Energy, 83, 1211–1223.
  31. Tsoka, S., Tsikaloudaki, A. & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55–76.
  32. Vuckovic, M., Kiesel, K. & Mahdavi, and A. (2017). Studies in the assessment of vegetation impact in the urban context .Energy and Buildings, 145, 331–341.
  33. Wang, Y. & Akbari, H. (2014).3D Simulation Analysis of Urban Micro-Climates to Inform Heat Island Mitigation Policies in Cold Climates. ACEEE Summer Study on Energy Efficiency in Buildings, 353-364.
  34. Wang, Y., Berardi, U. & Akbari, H. (2016). Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 114, 2–19.
  35. Zhang, L., Zhan, Q. & Lan, Y. (2018). Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Building and Environment, 130, 27–39.
  36. Zölch, T., Maderspacher, J., Wamsler, Ch. & Pauleit, S. (2016). Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry & Urban Greening, 20, 305–316.